OTTO VON GUERI('I'KE
N0 FACULTY OF
VIECDASCAYNCN COMPUTER SCIENCE

-_® Communication and

O Networked Systems
)

Communication and Networked Systems

Bachelor Thesis

Teleoperation of Quadrotor Drones
using Haptic Devices

Jon-Mailes Graeffe

Supervisor: Prof. Dr. rer. nat. Mesut Giineg
Assisting Supervisor: MSc. Frank Engelhardt

Institute for Intelligent Cooperating Systems, Otto-von-Guericke-University Magdeburg

May 11, 2022

Abstract

Abstract

Teleoperation is omnipresent in our world — basically everything that is controlled remotely
is teleoperation. One application of teleoperation is remotely controlling quadrotor drones,
which are gaining more and more popularity in all sectors and are the perfect match for being
integrated into the Internet of Things (IoT). Haptic devices allow multi-dimensional input
and provide touch sensation as an addition to the conventional visual feedback. Projects
already exist that research the combination of all three, the teleoperation of quadrotor
drones using haptic devices as input over Wireless Local Area Networks (WLANSs) or Wire-
less Wide Area Networks (WWANSs). However, few platforms exist that provide the big
picture, or in other words combine all aspects such as control, networking, encoding and
compression of haptic data, into one implementation that can in turn be used for testing
and evaluation. Also some ways on how to control a drone with haptic devices remain
unexplored.

This thesis provides the first iteration of a demonstrator implementation that aims to con-
tribute to the beforementioned problems, and documents the concepts and implementation
itself so that it can be used and extended in future research projects.

List of Figures
List of Tables
Listings
Acronyms

Glossary

Contents

1 Introduction
1.1 Thesis Contribution
1.2 Thesis Structure e

2 Background

2.1 Teleoperation

2.2 Haptic

Devices

2.3 Constrained Application Protocol

3 Related Work

3.1 Control of Quadrotor Drones
3.2 Haptic Devices for Teleoperation
3.3 Compression of Kinesthetic Data
3.4 Comparison of Demonstrator Implementations

4 Thesis Contribution

4.1 Software Requirements L
4.1.1 Control Frequency e
4.1.2 Control Latency
4.1.3 Haptics Frequency oo
4.1.4 Sensitive Data Rate oL
4.1.5 Extendability and Modularityo

4.2 Used Software e
4.2.1 Drone Simulation L o
4.2.2 Haptic Device Framework
4.2.3 Data and Communication
4.2.4 Other Dependencies

vii

Xi

xiii

XV

vi

4.3 Concept
4.3.1 Control Modes
4.4 Implementation
441 Messaging o
4.4.2 Component haptics-brain L.
4.4.3 Component drone-controller-airsim
5 Evaluation
5.1 Experiments.
5.1.1 Control Mode Latency
5.1.2 Haptics Latency
5.1.3 Compression Erroro oo
5.1.4 User Experience of Control Modes
5.2 Data Rate and Overhead
6 Conclusion
6.1 Summary e e
6.2 Future Work
Bibliography
Appendix
A.1 Pseudocodes for typical CHAI3D update loops
A.2 AirSim configuration file with default values
A.3 Example of libcoap server and client implementation

A.4 UML class diagrams for all control modes

45
45
46
48
51
93
56

57
57
o7

1.1

2.1
2.2
2.3
24

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1

5.2

5.3

5.4
9.5

5.6
5.7

Al
A2
A3
A4

List of Figures

Picture of a generic quadrotor drone with rotational axes 2
Control schemes in teleoperation 6
Rotational axes of a 6 DoF haptic device. 7
Picture of 3D Systems Touch™ haptic device 8
CoAP message format 9
Abstract control loop in the grand scheme of things 15
Screenshot of AirSim simulating a quadrotor drone 19
UML class diagram of a subset of CHAI3SD modules 22
Screenshot of complex scenery in CHAI3D 23
Screenshots of LIDAR scanning resulting in point cloud 34
Components of the implementation and their dependencies and communication 35
UML class diagram showing messaging class hierarchy 36
UML class diagram showing encoding class hierarchy 37
UML sequence diagram showing interactions between threads and components 40
UML class diagram showing inheritance tree of control mode classes 41
Different latency paths that work independently but contribute to overall

latency oL 46
Box plots showing control mode latency for direct control modes, compression

disabled 47
Box plots showing control mode latency for direct control modes, compression

enabled 48
Box plots showing haptics latency of simple control modes 49
Box plots showing haptics latency of Terrain-Aware Target Positioning con-

trolmode 50
Line plots showing compression error of an exemplary time series 52
Bar plot showing composition of control packets 55
UML class diagram for Manual Flight control mode 70
UML class diagram for Velocity Joystick control mode 71
UML class diagram for Target Positioning control mode 72

UML class diagram for Terrain-Aware Target Positioning control mode . . . 73

2.1

3.1

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
9.5

List of Tables

Specifications of 3D Systems Touch™ haptic device 8
Comparison of related work 14
Characteristics of various wireless network technologies 18
Subset of AirSim’s configuration options 21
Named scalars and vectors for general control mode conversions 29
Provided configurations for parameters of FWT-based compression 38
Characteristics of PC system used for evaluation 46
Characteristics of control mode latencies for direct control modes 47
Characteristics of haptics latencies for control modes and AirSim sensor settings 49
Compression errors for control modes and FWT configurations 53

User experience of control modes, 54

4.1
4.2
4.3
4.4
4.5

Al
A2

A3
A4
A5

Listings

Subset of function headers provided by AirSim 20
Example of FlatBuffers schema file 25
Usage example of FlatBuffers base API 25
Usage example of FlatBuffers object-based API 26
FlatBuffers schema file for messages and payloads 37
Pseudocode of a typical loop updating the force feedback of the haptic device 63

Pseudocode of a typical loop updating the force feedback of the haptic device

using abstract layer Lo 63
AirSim configuration file with default values 64
Minimal CoAP server implementation 67

Minimal CoAP client implementation 68

Acronyms

ACK Acknowledgement. 9, 56
API Application Programming Interface. xvi, 1, 18, 25, 26

Cl confidence interval. 46, 48
CoAP Constrained Application Protocol. vii, xi, xv, 3, 5, 8-10, 26, 36, 39, 56, 68, 69
CON Confirmable. 9, 36, 56, 69

DoF degree of freedom. 3, 6-8, 13, 14, 57
DTLS Datagram Transport Layer Security. 26

FPS frames per second. 16
FWT Fast Wavelet Transform. ix, xvi, 12, 13, 26, 38, 46-48, 51, 57

HTTP Hypertext Transfer Protocol. xv, 8

IDL Interface Definition Language. 24, 37
IMU Inertial Measurement Unit. 19

loT Internet of Things. iii, 1

IP Internet Protocol. 9, 10, 56

IPv4 Internet Protocol Version 4. 55, 56

JSON JavaScript Object Notation. 20, 24
MAE Mean Absolute Error. 51, 53

NED North East Down. 21
NON Non-confirmable. 9, 36, 56

OVGU-HC OVGU Haptic Communication Testbed. 3, 58

PCL Point Cloud Library. 26, 34, 43

Xiv

PID Proportional-Integral-Derivative. 20, 30
POSIX Portable Operating System Interface. xv, 26

RMSE Root Mean Square Error. 51, 53
RPC Remote Procedure Call. 20, 44, 46
RST Reset. 9

RTT round-trip time. 16, 17, 45

TCP Transmission Control Protocol. xv, 9

UAV Unmanned Aerial Vehicle. 1, 11
UDP User Datagram Protocol. xv, 9, 10
URI Uniform Resource Identifier. 8

WLAN Wireless Local Area Network. iii, 1, 17, 18, 56, 57
WMHN Wireless Multi-Hop Network. 3, 57
WWAN Wireless Wide Area Network. iii, 1, 17, 18, 56, 57

Glossary

3D Systems Touch™ Haptic device named Touch™, developed and manufactured by 3D
Systems. vii, ix, 7, 8, 17, 23, 2729, 34, 39

AirSim Open-source simulator focusing on the simulation of quadrotor drones. 19-21, 23,
27, 44, 45

CHAI3D C++ simulation framework focusing on haptic devices as input and output pe-
ripherals by the means of force feedback. 21-23, 33, 34, 39, 43, 44

CMake Open-source build system that is able to generate projects for IDEs and toolchains
from universal build definitions. 33, 34

Constrained Application Protocol Application layer protocol similar to HT'TP, specifically
designed for use with constrained nodes and networks. xiii, 3

Datagram Transport Layer Security Encryption protocol that is based on TLS (used by
e.g. HTTP, more generally protocols that base on TCP) but that can be used with
connection-less protocols such as UDP as well. xiii, 26

Fast Wavelet Transform Mathematical algorithm to efficiently turn a signal time series
into a sequence of approximation and detail coefficients, which can be turned back
to the original time series with an inverse function. If only the approximation coef-
ficients are transmitted, discarding the detail coefficients, this can be used as a form
of compression. xiii, 12

FlatBuffers Open-source cross platform serialization library for C++, Go, Java, Python
and lots of other languages. xv, 24, 25, 35, 37, 38, 42, 56

Interface Definition Language A language that describes interfaces in a language-independent
way, commonly used for defining data models for cross-language operability. In the
thesis, FlatBuffers defines such a language. xiii, 24

JavaScript Object Notation Compact file format that supports nested key-value pairs and
arrays. xiii, 20

libcoap Open-source C implementation of CoAP that works on both POSIX systems as
well as embedded ones. 26, 36, 68, 69

xXvi

LIDAR Method for determining distances to an object by targeting it with a laser and
measuring the time for the reflected light to return commonly used to scan three-
dimensional objects resulting in a digital representation of said objects, in this thesis
in a point cloud. 13, 19, 21, 33, 34, 43, 44, 48, 49, 54, 58

MAVLink Messaging protocol commonly used as an interface to flight controllers, such as
PX4. Can be used to communicate with drones that support it. 27

North East Down Local coordinate reference system that defines the north axis to be the
x axis with positive values being north, east axis to be the y axis with positive values
being to the east et cetera. xiii

operator Entity operating (controlling) a teleoperator (e.g. vehicle, robot) remotely, for
example a human tasked with controlling a drone. xvi, 1, 5, 6, 11-13, 15, 17, 27-33,
39, 51, 53, 54, 5658

Point Cloud Library Open-source framework containing numerous C++ libraries for 2D /3D
image and point cloud processing. xiii, 26
Portable Operating System Interface Standardized API interfacing between the operat-

ing system and applications. Lots of popular operating systems support it. xiv, 26

predictor display Visualization of a prediction of the teleoperator’s future state and envi-
ronment based on operator inputs, before actually enforcing them on the real teleop-
erator / in reality. 32, 33

PX4 Open-source flight controller (autopilot) for quadrotor drones. 24, 27

Remote Procedure Call Form of Inter-Process Communication; causing procedures to ex-
ecute in different address space, e.g. a process initiates a call to a function in another
process, possibly over the network. xiv, 20

teleoperation Operator operating (controlling) a teleoperator (e.g. vehicle, robot) re-
motely. iii, 1, 3, 5, 6, 11-13, 15, 30-32, 58

teleoperator Entity that is operated (controlled) by an operator remotely, for example a
drone controlled by a human. xvi, 1, 5, 6, 13, 16, 32

vcpkg Open-source cross-platform packet manager that focuses on distribution of C and
C++ libraries. 34

wavelib Open-source C implementation of various wavelet-based transformations such as
FWT. 26

CHAPTER 1

Introduction

The applications of teleoperation are omnipresent in today’s lives for many years, from RC
cars that children play with, to robots performing telesurgery [1]. Basically everything you
control remotely is teleoperation.

Also quadrotor drones, in the following thesis referred to as drones and commonly called
quadcopters, are a type of Unmanned Aerial Vehicles (UAVs) that use four rotors instead
of two like a regular helicopter, and gain popularity as a teleoperator in all sectors, be it
personal, commercial, governmental or military. For example, they are commonly used per-
sonally or commercially for entertainment purposes, such as competitive drone flights and
videography. They can also be used for surveillance, search and rescue missions (think find-
ing humans to be rescued in a collapsed building or in avalanche accidents), packet delivery
by Amazon or DHL, or even spanning emergency communication networks in response to
disasters quickly [2], [3].

Due to their four rotors that provide lots of stability and the ability to safely hover in the
air, quadrotor drones are predestined for attachment of payloads such as cameras, sensors
et cetera. Figure 1.1 illustrates such a drone on the left with its aerial axes, which will be
relevant in the thesis. On the right side of Figure 1.1 you can see a remote control that is
typically used to control the drone’s axes manually by a human drone operator.

In addition to the four rotors, they have an embedded computer on board that is con-
strained in its resources regarding battery capacity, memory and network capabilities, which
is called the flight controller and usually expose Application Programming Interfaces (APIs)
to programmatically control the drone over wireless communication, by becoming a part of
WLANs or WWANSs. The easy-to-access interfaces make the drone the perfect device to be
embedded into the IoT, which does not seem to be falling in interest with the ever-rising
number of connected devices that is forecasted to reach 75 billions by 2025 [4].

Haptic devices exist that allow positional and orientational input in three-dimensional space,
which exceeds the capabilities of the conventional remote controls of commercially available
drones. In addition to that, lots of haptic devices act as an output device too, providing
touch sensations as haptic feedback, extending the common visual feedback of control sys-
tems. They are vastly relevant to the rapidly emerging Tactile Internet and human-machine

Figure 1.1: Picture of a generic quadrotor drone on the left side, which happens to have a camera on
board. The rotational axes are sketched into the picture: the green arrow represents the
yaw, the blue arrow the roll and the red arrow the pitch. On the right side sits a typical
remote control that is used to control the drones remotely, with a tablet providing a
camera feed and additional information.

interaction in general due to their variability and high dimensionality, and already have lots
of applications in medicine, design and more (see Section 2.2 for more applications).

No wonder that projects combining all technologies mentioned above sprout currently: the
teleoperation of quadrotor drones with haptic devices as the input device, assisting the
human pilot by extending his or her visual feedback with haptic feedback.

1.1 Thesis Contribution

In Section 3.4 it will be shown that there are already plenty of demonstrators implementing
the teleoperation of quadrotor drones with haptic devices in order to research, test and
evaluate the control performance, network requirements and advanced topics such as col-
lision avoidance. However, few projects provide a platform that implements and allows to
evaluate a broad spectrum of aspects on control systems — they focus on single, individual
aspects such as haptic communication and control performance.

Also, the projects listed in Section 3.4 do all implement their own software platform with-
out providing the implementation itself or details on the implementation, which causes
reinventions of the wheel’ quite often.

That and the urge to explore new ways of using six degree of freedom (DoF) haptic de-
vices to control a drone is why a demonstrator is implemented as the main contribution
of this thesis that attempts to cover as much aspects as possible, while being as modular
and extendable as possible. It will be part of the OVGU Haptic Communication Testbed
(OVGU-HC) at the Otto-von-Guericke University of Magdeburg, which already provides
a platform to do data-driven experiments on Wireless Multi-Hop Networks (WMHNSs) [5].
The testbed brings many benefits such as an experiment definition language and automatic
scheduling of experiments, and it will feature 200 nodes in the future, therefore allowing to
run experiments on complex wireless and wired topologies. For now, on the first iteration,
the implementation will not be evaluated as part of the testbed for simplicity and due to
time constraints.

Said modularity and extendability allows to easily replace and add small parts of the im-
plementation by providing intuitive interfaces with the goal being to provide a platform
for further research on newly emerging communication technologies, different control and
compression algorithms and a variety of drone hardware. The thesis will act as sort of an
out-of-code documentation for the implementation, so that future developers understand
the structure of the demonstrator and get to know how to add new hardware drones with
minimal effort.

1.2 Thesis Structure

The next chapter, Chapter 2, revisits the fundamental topics such as teleoperation and
haptic devices. Also, the Constrained Application Protocol (CoAP) is introduced shortly
in Section 2.3.

Afterwards, Chapter 3 introduces some of the work related to the thesis topics like quadrotor
drones, haptic devices and haptic communication, and ends with Section 3.4 comparing

existing demonstrators with the thesis implementation.

Chapter 4 starts with the definition of the requirements to the implementation, followed by
the description of the software architecture and the control system concept in Section 4.3.
Then, Section 4.4 goes into detail about the implementation’s messaging system and source
code.

In Chapter 5 the thesis implementation is evaluated by experiments regarding various la-
tencies and finds out if the requirements set to the implementation are fulfilled. Section 5.2
analyzes the required data rates of the implemented control modes.

A summary and an outlook for possible future work is given in Chapter 6.

CHAPTER 2

Background

Some of the concepts and technologies may not be common knowledge to you or need
refreshment, such as teleoperation, haptic devices and the communication protocol used
in this thesis. That’s why this chapter revisits the terminology of teleoperation in Sec-
tion 2.1, Section 2.2 introduces what haptic devices are and CoAP is summarized briefly in
Section 2.3.

2.1 Teleoperation

Teleoperation is an operator (e.g. a human, in this thesis the drone pilot) operating a
teleoperator (e.g. robot or vehicle of some sort, in this thesis it’s the quadrotor drone)
remotely. It is not new at all and terminology has been well established. This section
briefly revisits that terminology.

Controlling a teleoperator can be done in different ways [6]. Direct control means that the
operator controls the teleoperator directly, so making inputs are directly translated to mo-
tion or some other kind of action by actuators on the teleoperator, and information provided
by sensors is directly perceived by the operator. In direct control, there is one closed con-
trol loop consisting of the operator and the teleoperator. Supervisory control, in contrast,
is a control scheme in which the teleoperator has the capability of making decisions and
controlling actuators based on sensor inputs itself, autonomously [6]. The overall goals of
the teleoperator are still dictated by programming of an operator or another entity, though.
Instead of only one control loop between the operator and the teleoperator, there are now
two control loops — one between the operator and the teleoperator which exists so that the
operator can set goals based on what happens (what is perceived from sensors or direct
sight), and another one on the side of the teleoperator that controls the actuators based
on the dictated goals and sensory information. Figure 2.1 shows the difference between the
two control schemes by illustrating the control loops.

Regardless of the control scheme used, teleoperation introduces challenges [1]. Hardware-
wise, enough sensors and actuators need to be installed that have enough precision and
accuracy, so that the operator and/or the teleoperator can make decisions that result in

[
c
8 Teleoperator with
b Actuators and Sensors
g (e.g. RC car with inputs wired
o Operator to motor controller and steering)
(e.g. human with eyes and
a remote control in hands)
c
: S X
ol Desired Position
_3 Teleoperator with
E Actuators and Sensors
2 Operator (e.g. drone with motors,
n (e.g. human with eyes and a map gyroscope, cameras)
on a laptop to pick a position to fly to)

Figure 2.1: Sketch showing the fundamental control schemes in teleoperation.

sensible actions. Also, due to the distance between the teleoperator and the operator, time
delays occur which need to be kept low enough to maintain stable control. Those challenges
need to be addressed by the implementation of the thesis, which requires research on the
nominal values needed at minimum to provide an acceptable control experience.

One popular strategy to at least overcome the issue of time delay is called Move-and-
Wait [1]. It is very simple: instead of the operator trying to achieve continuous operation
(e.g. continuous movement) of the teleoperator, the operator makes only some inputs, then
waits for the operations to be done, and observes the resulting state before making the next
inputs. This theoretically allows for arbitrary large time delays and is often used in space
teleoperation, but only works for teleoperators that do not require continuous inputs. For
example, a robotic arm does not have any problem with not moving for a long time, while
an aircraft might just crash if no inputs are done for a period of time.

2.2 Haptic Devices

In general, haptic devices are devices which can create an experience of touch, or in other
words tactile sensation to living creatures. Haptic feedback can be given in various ways,
for example vibrations or applying forces to the user’s hand.

There are a lot of different devices that fit into the definition of a haptic device, such
as sensory gloves, exoskeletons for arms and bodies, platforms that you can move on et
cetera [7]. Technically, a game controller such as those used for making inputs to a gaming
console, is a haptic device already if it has a vibrator built into it that provides minimal
tactile feedback to its user. Because the vibration feedback is only one dimension that can
be sensed (the strength of the vibration), a game controller with vibration has one degree
of freedom (DoF).

9)
-2 YUPOSITION

Figure 2.2: Axes provided by the 3D Systems Touch™ haptic device which has six DoF, meaning the
the x, y and z coordinates that point to the tip of the haptic tool (stylus) of the haptic
device marked by the yellow circle, as well as the yaw, pitch and roll angles represented
by the green, red and blue arrows, can be read from the device. The z axis is the vertical
one.

However, in this thesis, one refers to a special kind of desktop haptic input and output
device that allows to make inputs in the form of a 3D position by moving a haptic tool,
such as a pen or a gripper, in three-dimensional space, along with the force vector applied
to said haptic tool. Those devices usually also provide haptic feedback by applying forces
to the haptic tool and subsequently the user’s hand. They come in various configurations
with different DoFs. For example, three DoFs mean that the haptic tool can move freely
in a 3D workspace area around the haptic device, and usually also apply a force vector
three-dimensionally. Devices with six DoFs additionally read the orientations (yaw, pitch,
roll angles) of the haptic tool in addition to the positional dimensions which allows for more
sophisticated control schemes. Naming the rotational angles yaw, pitch and roll, which are
visualized in Figure 2.2, comes primarily from aeronautics. For a typical aircraft such as
those used in airliners, yaw is the nose heading left or right about an axis from top to
bottom, pitch is the nose up and down about the axis from wing to wing and roll is the
rotation on the axis from tail to nose (nose is the front where the cockpit lies, tail is the
back where the stabilizers and elevators sit).

Applications of haptic devices are very diverse and interesting, ranging from art over design
to medicine [7]. Like mentioned before, vibration is used as a feedback in game controllers
to note certain events or situations in video games, and also in aviation to signal stalls by
vibrating the pilot’s controls. More sophisticated forms of haptic feedback, like with the
beforementioned six DoF devices, are used in graphic design to draw on virtual canvases
or to form 3D models interactively. There are also medical applications such as surgical
simulations, endoscopy and laparoscopy.

Figure 2.3: Picture of the 3D Systems Touch™ haptic device. The glass is not part of the device
and is only utilized as a professional holding solution.

Workspace width 160 mm, height 120 mm, depth 70 mm

Weight 1.42kg

Nominal Position Resolution > 450dpi, ~ 0.055 mm

Mazimum FExertable Force 3.3N

Continuous Ezertable Force (24 hours) > 0.88N

Stiffness X axis > 1.26 Nmm~!, Y axis > 2.31 Nmm™!,
Z axis > 1.02Nmm ™!

Inertia (mass at tip) ~45g

Interface USB 2.0

Table 2.1: Specifications of the 3D Systems Touch™ haptic device.

In this thesis, the specific haptic device hardware used is the 3D Systems Touch™ pictured
in Figure 2.3. It has six degrees of freedom (6 DoF), features a stylus as its haptic tool and
is characterized in Table 2.1. Any specification provided about the device is sourced from
its user guide, which also gives instructions about connecting the device to a PC, installing
required device drivers and how to physically use the device properly [8].

2.3 Constrained Application Protocol

CoAP is an application layer protocol similar to the Hypertext Transfer Protocol (HTTP),
specifically designed for machine-to-machine communication and use with constrained de-
vices (e.g. 8-bit microcontrollers with very small amounts of memory) and networks [9]. It
provides a request/response model between HTTP-like endpoints that are identifiable via
Uniform Resource Identifiers (URIs), which makes the protocol suitable for web applications

o 1 2 3 4 5 6 7 &8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ver. |[Type] TKL Code Message ID
Token (optional, TKL bytes)

Options (optional)

11111111

Payload (Application Data)

Figure 2.4: Format of a CoAP message, consisting of a four byte header, optional token and options
and the payload, which is basically the data that is to be transmitted.

but is not limited to those applications at all:

GET coap://<ip-address>/pipe/pressure
POST coap://<ip-address>/cauldron/temperature

By default, CoAP is supposed to be used with the User Datagram Protocol (UDP) as
transport to exchange individual messages, but other means of transportation like TCP or
even non-IP-based methods could be utilized, too. Messages can either contain a request,
a response or something else.

Figure 2.4 shows the message format used by CoAP, more specifically that messages always
contain a header with, among other things, the type of the message, the code (for requests
which request method such as GET, POST, PUT, DELETE; for responses the status code sim-
ilar to success and error codes in HTTP), a message ID to identify duplicates and match
acknowledgements and a token to correlate requests and responses. There are four types of
messages:

« Confirmable (CON),

» Non-confirmable (NON),

o Acknowledgement (ACK) and
Reset (RST).

CON messages, that can be both a request or a response, must be acknowledged with either
an ACK message or be rejected by sending a RST message by the recipient. If such a CON
message is not acknowledged in time, it is retransmitted by the sender multiple times until
a timeout occurs. So, using this type of message ensures reliable transmission and should
be used when it’s crucial for the recipient to get the data.

NON messages on the other hand do not need to be acknowledged, thus no retransmissions
will be done by protocol implementations on their own. Using this type of message makes

10

sense when reliable data transmission is not required, e.g. when losing some of the messages
is not critical or retransmissions are to be avoided to not congest the network anymore.

Apart from the obvious advantages of CoAP such as the low data overhead compared to its
alternatives and the small memory footprint of its implementations, which make CoAP very
versatile as it can be used on basically any transport or device (think cheap constrained
onboard computers for quadrotor drones), it features reliability, congestion control and a
common format to be used regardless of the transport [9], [10]. Also, efforts are being
made to extend the protocol with features such as message encryption and authentication
(even though you can of course use a transport that already provides those features) [11].
Generally CoAP is extendable due to its option system, which already complements the
requirement of modularity and extendability that will be introduced in Section 4.1.5. Be-
cause of those advantages over other lower layer protocols such as UDP or even raw Internet
Protocol (IP) packets it is preferable to use CoAP on top.

CHAPTER 3

Related Work

In the following, papers and books will be introduced that provide research regarding the
thesis topics, primarily about controlling quadrotor drones or drones in general in Sec-
tion 3.1, teleoperation with haptic devices in Section 3.2 and the encoding as well as com-
pression of kinesthetic data in Section 3.3. At the end of the chapter, in Section 3.4, several
existing demonstrators will be compared with the thesis implementation to show that there
is currently no platform to be found such as the one implemented for this thesis and also
that the thesis contributes to the research field by providing new aspects.

3.1 Control of Quadrotor Drones

A lot of research exists regarding the teleoperation of quadrotor drones, from algorithms to
control the drone’s motors, over strategies that avoid collisions based on visuals and depth
maps, to work focusing on the communication between the drone and the operator through
networks. That makes sense as quadrotor drones are gaining popularity even for private
use (entertainment, hobbyist filming, competitive drone flights et cetera).

It is impossible at this point to cover all of the research about the different aspects of drone
control due to the sheer number, but to name a few, Odelga et al. recently presented a
quadrotor drone platform that utilizes RGB-D cameras (color cameras with depth value for
each pixel) to build a model of the obstacles in the drone environment to autonomously
avoid collisions [12].

On the communication side, Riestock et al. performed a user study on the required band-
width to control drones for two different means of environment representations that are
used as visual feedback to the human operator, namely camera images and voxel-based grid
maps [13].

For more research regarding controlling mostly quadrotor drones Kangunde et al. provided
a broad survey in [14], which additionally includes work about the hardware and operating
systems commonly used for quadrotor drones and other UAVs.

12

3.2 Haptic Devices for Teleoperation

Regarding teleoperation with the help of haptic devices in general, there is also a lot of
research available. To get an overview about haptic devices and their capabilities and
applications, [7] is suggested as a survey by Laycock et al.

Another contribution was that Wildenbeest et al. did experiments on the impact of hap-
tic feedback on the performance of assembly tasks that are done remotely, and found out
that providing haptic feedback substantially improved the overall performance of the oper-
ators [15].

Antonakoglou et al. touched a different aspect, the haptic communication, in their survey
and discussed several methodologies and technologies regarding haptic communication [16].
One of the main focuses was how 5G wireless technology can be used for haptic communi-
cation and will shape the Tactile Internet in the presence and future.

3.3 Compression of Kinesthetic Data

The compression of kinesthetic data such as position, velocity and force vectors or rotation
matrices is also a really active topic in research. Hinterseer et al. published several articles
regarding the compression of haptic data. For example, in [17] an approach was proposed
that reduces haptic data to six to ten percent by using a combination of Kalman filters and
model based prediction on haptic signals.

In [18] Hinterseer et al. used a psychophysically motivated compression algorithm that only
generates and sends packets if the change of the values of the haptic data exceed a threshold
at which differences are noticeable by the human operator, which managed to reduce packet
rates by up to 90 percent without any human-perceivable difference.

Another example of a technique that can be used to encode and compress data in haptic
communication is proposed by Engelhardt et al. which bases on block-wise Fast Wavelet
Transform (FWT) [19]. This method is implemented in the thesis implementation, and will
be discussed later in Section 4.4.1.

Steinbach et al. provides both the fundamentals and an overview of the state of the art
of haptic codecs, or in other words the ways how haptic and tactile data can be encoded
efficiently in the first place and also compressed to lower bandwidth requirements [20], which
is a good start for further reading on the topic.

3.4 Comparison of Demonstrator Implementations

Now, let’s take a look at work that provides some kind of implementation of a demonstrator
or at least the concept of it, which makes it comparable to this thesis. For work like that,
the following aspects will be compared to show that no platform is currently to be found
that combines all of them:

a. teleoperation over networks generally,

b. direct control as explained in Section 2.1,

13

c. supervisory control also introduced in Section 2.1,
d. input by haptic device to control a teleoperator,

e. haptic feedback to complement visual feedback such as a camera feed with sensory
information,

f. the DoF of the haptic input and possibly feedback if provided,
g. quadrotor drones used as the teleoperator specifically as well as

h. compression to minimize data flow between components.

As an early example, Lam et al. implemented two different haptic feedback techniques to
control some kind of UAV helicopter with an electro-hydraulic aircraft stick (so most likely
a two DoF haptic device), of which one applies force based on the distance to an obstacle
directly and the other one representing the distance through the springiness of the haptic
tool instead to avoid an overshoot of the haptic tool when released by the operator [21].

Rognon et al. used another kind of haptic device — an exoskeleton called the FlyJacket
which uses inflatable air pouches to render the sensation of air pressure to the operator
while flying in order to improve the situational awareness [22]. The FlyJacket seems to be a
haptic device with only one DoF and the used drone was not a quadrotor drone but rather
a conventional aircraft (no helicopter).

DronePick is a project by Ibrahimov et al. that uses the haptic feedback of an electrical
glove to haptically visualize objects that can be grabbed with a magnetic grabber that is
attached to a quadcopter, and the glove is also used to control the drone simultaneously
by moving the drone to the relative position of the glove to a zero point [23]. The object
is scanned by a LIDAR sensor and the goal is to help the operator to find out when the
grabber is above the object. It is not entirely clear how much degrees of freedom the glove
has, but it probably provides at least six DoF for individual fingers.

Macchini et al. used a glove to control a quadcopter too and performed several user studies
on the learning path and control performance of operators [24]. The glove was tracked with
a motion capture system and equipped with multiple so-called tactors that can vibrate as
force feedback. Due to the fact that a motion capture system was used, it is likely that the
input had six DoF.

Another haptic device, more specifically an arm and wrist sleeve, was proposed by Ra-
machandran et. al that reads the elbow and wrist angles to control a drone’s altitude and
attitude [25]. The sleeve also allows to block the movement of the joints of the operator’s
arm and hand as a sort of haptic feedback, so that control into a specific direction can be
forbidden if an obstacle is near. Because two angles are read, the device can be classified
as a two DoF haptic device.

The paper about the FWT compression mentioned earlier also implements a teleoperation
system in which a WiiMote® haptic device is used to control the speed of a quadrotor
drone [19]. A WiiMote® has six DoF but without force feedback, and in the paper the
control is restricted to two DoF for the sake of simplicity, with the goal of evaluating the
compression and not the control experience itself.

Table 3.1 illustrates that there are lots of existing projects that implemented drone control

14

a b c¢c d e f g h
[21] Lam et al. v Vv X v vV 2DoF O X
[22] Rognon et al. v Vv X X v 1DoF X X
[23] Ibrahimov et al. v v X v V 6DoF v X
[24] Macchini et al. v Vv X Vv V 6DoF v X
[25] Ramachandranetal. v v X 2DoF v X
[19] Engelhardt et al. v v X vV X 2DoF v V

Table 3.1: Comparison of related work regarding the aspects a to h defined in Section 3.4. A v’
means that the aspect is present in the corresponding work, a ’X’ means it is non-existent
and a 'O’ means that it is unclear whether the feature is present or not.

with haptic devices, but since there is no demonstrator that combines all the aspects, the
thesis implementation that does exactly that is justified and makes sense as a contribution
to the research community.

CHAPTER 4

Thesis Contribution

One of the main results of the thesis is the software. This chapter gets into detail about the
requirements to the implementation, its underlying concepts and how the implementation
itself is done.

As figured out in Section 2.1, teleoperation introduces challenges in terms of time delays and
also haptic devices need to be provided with data in specific frequencies so that haptic per-
ception is smooth. Section 4.1 researches nominal minimums (or maximums, respectively)
for those delays and frequencies, and also introduces additional general requirements to
the software from a software engineering perspective, such as extendability and modular-
ity. The implementation provided depends on some external software, mostly libraries and
frameworks, which are shortly introduced in Section 4.2. Before going into details about
the implementation itself in Section 4.4, Section 4.3 conceptualizes how the software is
structured generally and how the operator of the drone shall be able to control the drone
exactly.

4.1 Software Requirements

In this section the nominal and qualitative requirements to the overall control system and
the implementation itself will be analyzed and defined.

_ Direct Line of Sight (could be Camera Feed)
O : —
—]
Haptic Input = USB Serial e.g. Ethernet e.g. 5G '&?ﬁ'
Network S
e.g. WAN+LANSs =

— — =\

Figure 4.1: Abstract control loop in the grand scheme of things.

16

4.1.1 Control Frequency

The control loop with the lowest frequency, which most likely will be the bottleneck in terms
of control performance and experience, consists of the human teleoperator perceiving how
the drone behaves and making inputs to the haptic device based on that, as sketched in
Figure 4.1. An upper bound and a lower bound exists for the frequency of that control loop.
While the upper bound is determined by the limits of how fast the human eye can perceive
changes such as movements of the drone, the lower bound is the frame rate perceived by the
human eye at which control performance is acceptable for a specific scenario. For the lower
bound, [26] suggests that acceptable psychomotoric performance can be accomplished with
frame rates provided to the user as low as 10 Hz, but also mentions that higher frame rates
are beneficial. However, the upper bound does not seem to have a clear consensus in science.
Generally though, higher frame rates appear to be beneficial in terms of smoothness and
subjective quality up to 240 frames per second (FPS), but the improvements stagnate with
increasing frame rate [27].

As a consequence, it makes sense to set the minimum required frequency for control of the
drone to 10 Hz. To make the movement appear smoother to the teleoperator, higher frame
rates are desirable but not required. In the following experiments the frequency will be set
to

fcontrol = 60 Hz

because this is the maximum frequency proved to be working well with the simulator that
will be used instead of a real hardware drone. Even though higher frequencies would
objectively improve user experience and control performance as suggested before, they un-
fortunately caused visual stuttering which was not the result of a hardware bottleneck but
rather implementation of either the flight controller or something else in the physics engine
of the simulator used. More details on the simulator itself will be given in Section 4.2.1.

An argument could be made that 60 Hz is also the refresh rate of most computer displays
and therefore the frame rate put out by the simulation rendering used for development
and experiments if vertical synchronization is enabled, which it is by default. However,
it has been proven that in video games frame rates higher than the refresh rate of the
display are beneficial in terms of input lag [28], or in other words, changes to the inputs
are considered by the physics engine earlier even though those changes are not visually
rendered yet. This applies to this project too, so theoretically it would be better to increase
the control frequency if the simulator would allow to do that.

4.1.2 Control Latency

The maximum acceptable latency from applying a change to the input of the haptic device
by the operator, to the drone actually moving at which a stable flight can be maintained,
depends on various factors such as drone speed, desired flight distance, obstacles in the
environment et cetera. Therefore, requiring a nominal maximum delay is not trivial. [1] re-
viewed research on maximum round-trip time (RTT) delays in teleoperated systems. The

17

maximum RTT delay for different control strategies ranged from 400 ms up to one sec-
ond. For this thesis, the latency, which is the same as the delay in context of the thesis, is
required to be lower or equal than

N 400 ms

Trae = > = 200 ms

to have an approximation of the maximum latency. The value is divided by two as we
do not define the RTT but rather unidirectional latency. The reason for that is that the
proposed implementation will only communicate unidirectionally, which will not allow the
measurement of the RTT.

Please note that the requirement is only applied to the latency introduced by the software
itself, as if all components run on a single machine communicating over the loopback inter-
face. Latencies that would be introduced in real-world networks by physical and data link
layers are ignored for now. If the proposed implementation shall be connected through a
real network, satisfaction of this requirement needs to be evaluated for said network.

4.1.3 Haptics Frequency

The 3D Systems Touch™ haptic device specifies that the device driver requires that haptic
device forces are updated at a rate of

fhaptics = 1000 Hz

in [8] which therefore requires that the implementation is able to meet the given frequency.

Such a high refresh rate is needed so that the servo motors of the device maintain smooth
motions when the haptic tool accelerates or decelerates.

Operation might be possible with a lower frequency down to 500 Hz, as this seems to be the
minimum frequency necessary to adequately reproduce all haptic sensations that humans
can feel [29]. Nonetheless it makes sense to use the hardware at its fullest potential, thus
1000 Hz is the goal.

4.1.4 Sensitive Data Rate

The required data rate of all communication should be low enough that communication
can be done on WLANSs such as WiFi and Bluetooth, so that the drone can be controlled
at least over a few meters without wired connection. Also, lots of commercially available
drones already have a WiFi chip on board. It would be beneficial if WWANSs such as 5G,
WiMAX, 4G/LTE or even older inferior standards such as 3G/UMTS and HSPA+ can be
used too, which would enable operators to control drones over large distances of several
kilometers, as long as cell service is provided in the respective area. In Table 4.1 one can
see the maximum data rates that can theoretically be reached within WLANs and WWANSs

18

Type Technology Maximum Data Rate Range

WLAN Bluetooth 2 Mbits™1 50m
WiFi 54 Mbits~! 100 m

WWAN 3G/UMTS 1.92 Mbits—! 10m — 150 km
HSPA+ 84 Mbit s~ 1 10m — 150 km
4G/LTE 300 Mbits~! 10m — 150 km
5G 20 Gbits™! 10m — 150km
WiMAX 70 Mbit s~ ! 50 km

Table 4.1: Characteristics of wireless technologies for spanning WLANs [30], [31] and
WWANS [32], [33]. The ranges of the WWANSs are given as an estimation of the range
of a single cell tower. By using a network of cell towers, arbitrary long distances can be
realized.

based on different technologies. Strictly speaking, those data rates will not necessarily be
reached in real life, which needs to be taken into account on evaluation.

Generally, the lower the required data rate is, the better. When networks are too crowded
and communication media is over-utilized, networks may not be able to even provide typical
data rates to every station. That’s why the implementation should try to actively keep
bandwidth requirements low by means of compression.

4.1.5 Extendability and Modularity

APIs of flight controllers and the flight controllers itself, so the things needed to remotely
control the drone with own applications, are often proprietary and as a consequence very
different from each other. That would require that for each drone, a control application
would need to be re-implemented or at least heavily changed for each flight controller or at
least for any drone manufacturer.

Also, this thesis initially was planned to work with a real hardware quadcopter from the
beginning, but due to COVID 19 regulations that suggested working at home, safety con-
cerns on campus and also to lower development efforts, it was decided that a simulator,
more specifically the one described in Section 4.2.1, shall be used. However there might be
plans in the future to test the implementation on a real drone.

The beforementioned facts lead to the explicit requirement of developing a system that
is extendable so that it’s possible to introduce new drone hardware, preferably with as
minimal effort as possible. In order to keep the software extendable, an implicit requirement
is modularity so parts of the implementation that are specific to hardware or its software
are interchangeable without the need to modify the rest of the software.

19

Figure 4.2: Screenshot of AirSim simulating a quadrotor drone in an urban environment with all
available camera views enabled.

4.2 Used Software

4.2.1 Drone Simulation

Instead of using a real drone for testing and evaluation, a simulator is used to lower the
effort required to implement the initial iteration of the demonstrator by cutting down any
hardware-related specifics. A simulator also removes the risks induced to the well-being of
humans and creatures, the integrity of objects and the hardware itself in the fly space by
running untested control code.

In this thesis, AirSim will be used for physics simulation of the drone and the three-
dimensional environment around it. AirSim is an open-source platform that allows to
physically and visually simulate autonomous vehicles [34]. It is built on the Unreal En-
gine, a state-of-the-art real-time 3D simulation engine that is primarily used for developing
video games, which allows AirSim to run physics simulations of complex scenery and ren-
der visually realistic images in real time. That’s why AirSim is predestined for testing and
evaluating algorithms that are supposed to control autonomous vehicles in the real world,
and even more so to be utilized in machine learning and deep learning disciplines, e.g. for
generation of training data or for evaluation of artificial intelligence. Details about the
vehicle and environment models can be found in [34].

Currently AirSim supports quadrotor drones and four-wheeled cars out of the box, as well
as a variety of sensory components that can be configured to be attached to the vehicles, like
Inertial Measurement Units (IMUs), magnetometers, GPS receivers, barometers and even
LIDAR sensors. Furthermore, it optionally renders several camera views in addition to the
normal third-person camera, such as a depth map, a segmentation and a first person view,
as can be seen in Figure 4.2. Due to its open-source nature, many 3D environments are
provided by the project’s community to choose from depending on the specific application,

20

each offering individual characteristics.

Other physics simulators exist, like general robot simulators, for example Gazebo [35] or
CoppeliaSim [36]. However, for this thesis, AirSim is the perfect match due to its special-
ization on quadrotor drones, even though only a small subset of its features will be used.
AirSim implemented a whole flight controller which is essentially a set of Proportional-
Integral-Derivative (PID) controllers configured for controlling the four motors of a quad-
copter to accomplish high-level goals such as flying to a specific position or maintaining a
specific acceleration vector. In more general robotics simulators, this functionality would
be needed to be implemented first in order to allow for evaluation of controllability in
real-world scenarios, but AirSim takes away that step — no need to reinvent the wheel.

1 class MultirotorRpcLibClient : public RpcLibClientBase {

2 using Client = MultirotorRpcLibClient;

3

4 Client* takeoffAsync(float timeout_sec = 20, [...]);

5 Client* landAsync(float timeout_sec = 60, [...]1);

6 Client* moveByRollPitchYawThrottleAsync (float roll, float pitch, float yaw,
float throttle, float duration, [...1]1);

7 Client* moveByVelocityAsync(float vx, float vy, float vz, float duration, [...
1

8 Client* moveToPositionAsync(float x, float y, float z, float s, [...]1);

9 [...]

10

11 LidarData getLidarData([...]) const;

12 ImuBase::0Output getImuData([...]) const;

13 BarometerBase::0Output getBarometerData([...]) const;

14 Loocd

15 };

Listing 4.1: Subset of function headers provided by AirSim that can be called by RPC, in shortened
C++.

To tell the drone what to do, interfacing with AirSim through Remote Procedure Call
(RPC) is necessary. The RPC interface allows interfacing with almost every programming
language. AirSim provides straight-forward functions to initiate drone movements and fetch
sensory data. A small subset of those functions can be found in Listing 4.1.

Beforementioned sensory components that are attached to the drone in the simulation and
several other configuration options effecting the rendering and physics of the simulator
can be set by a JavaScript Object Notation (JSON) configuration file. The configura-
tion file settings. json is searched for in the folder of the simulator’s executable and in
<user>/Documents/Airsim, but can also be specified explicitly by providing an absolute
path to the configuration file:

./<AirSim executable> --settings ’C:\path\to\settings.json’

example for ’Blocks’ environment
./Blocks.exe --settings ’C:\path\to\settings.json’

Appendix A.2 shows the contents of the configuration file with default values. A subset
of the options that can be configured are listed in Table 4.2 with short explanations. For

21

Option Explanation
SimMode Simulation mode ("Multirotor’, ’Car’, ...)
ViewMode Camera mode ("GroundObserver’, 'Fpv’, 'Manual’, ...)
Vehicles.<name>.
VehicleType Vehicle type ("PhysXCar’, "SimpleFlight’)
Sensors.<name>.
SensorType Sensor type (6 for LIDAR)
Sensors.<lidarName>.
NumberOfChannels Number of channels (individual lasers)
RotationsPerSecond Rotations per second
HorizontalFOVStart Horizontal field of view range start (in degrees, -180° to 180°)
Horizontal FOVEnd Horizontal field of view range end (in degrees, -180° to 180°)
Vertical FOV Start Vertical field of view range start (in degrees, -90° to 90°)
Vertical FOVEnd Vertical field of view range end (in degrees, -90° to 90°)
{X,Y, 7} Position relative to vehicle (NED coordinates, in meters)
{Yaw, Pitch, Roll} Orientation relative to vehicle (in degrees)

Table 4.2: Small subset of AirSim’s configuration options with short explanations.

detailed and complete information, AirSim’s documentation has several dedicated pages!.

The code repository of the thesis? contains various settings files that are used for exper-
iments in this thesis. Most of them configure a LIDAR sensor with different scanning
parameters, which can be identified by the corresponding file name:

drone-controller-airsim\settings\without-lidar. json
drone-controller-airsim\settings\with-lidar-90hfov-90vfov-50ch-10rot. json
drone-controller-airsim\settings\with-lidar-90hfov-90vfov-100ch-12rot. json
drone-controller-airsim\settings\with-lidar-180hfov-180vfov-50ch-10rot.json

4.2.2 Haptic Device Framework

CHAI3D is a cross-platform open-source C++ simulation framework that focuses on sup-
porting commercially available haptic devices, like the one used for this thesis as introduced
in Section 2.2, as input and output peripherals [37].

The library consists of several modules, each containing various classes that can be utilized
for own applications. A subset of those modules is depicted in Figure 4.3.

One of the main advantages of CHAI3D is that it takes care of downloading and setting up
device drivers for the haptic device in a platform-agnostic manner, and gives developers an

"Mttps://microsoft.github.io/AirSim/settings/, https://microsoft.github.io/AirSim/sensors/,
https://microsoft.github.io/AirSim/lidar/
’https://code.ovgu.de/comsys-group/haptic-drone-control

https://microsoft.github.io/AirSim/settings/
https://microsoft.github.io/AirSim/sensors/
https://microsoft.github.io/AirSim/lidar/
https://code.ovgu.de/comsys-group/haptic-drone-control

22

Devices)\

©cPhantomDevice

©cGenericDevice

[© cGenericHapticDevice)—o{@cHapticDeviceHandIer]
P

Haptic Tools\

©cGenericTooI

Force Rendering Algorithms\

l@cAIgorithmFingerProxy}

[@ cAIgorithmPotentialFieId]—l>(© cGenericForceAIgorithm}
AR Y

World\

©cMuItiPoint

Figure 4.3: UML class diagram of a subset of CHAI3D modules and some of their classes.

23

Figure 4.4: Screenshot of a complex scenery (a big point cloud) that is rendered haptically and
visually by CHAI3D. The gray ball is the tip of the haptic tool of the haptic device.

abstraction of device interfaces that are different for each manufacturer and appear to be
proprietary in most cases.

Thanks to CHAI3D, communication with the haptic device is as easy as calling meth-
ods such as getPosition, getRotation and getGripperAngleDeg, which are members of
the cGenericHapticDevice class, to retrieve the state of the haptic tool. There are also
members for applying force feedback to the haptic tool manually with e.g. setForce. A
typical loop that updates the haptic force feedback through the device driver looks like the
pseudocode that can be found in Appendix A.1.

However, to render more complex scenery haptically, such as the one in Figure 4.4, the
cWorld class exists that represents a virtual world consisting of 3D objects, which can
be used in conjunction with collision detection and an implementation of the finger-proxy
algorithm proposed in [38] to apply force feedback accordingly. So, when using cWorld,
the library is actually able to ’abstract away’ any mathematical considerations, all force
calculations are done internally. Typically the loop that communicates with the device
driver changes to the second pseudocode in Appendix A.1, if you choose to use the abstract
way with cWorld and the finger-proxy algorithm.

Another advantage is that, even though this thesis specializes its design concepts and imple-
mentation on a single haptic device, using CHAI3D in the implementation makes it fairly
straight-forward to adjust for haptic devices other than the 3D Systems Touch™.

Although CHAI3D also provides modules to implement 3D physics simulations and real-
time visualization, it is not utilized for that, because AirSim brings the implementation of
a flight controller and focuses on quadrotor drones, as argued in Section 4.2.1. Instead,
in the implementation proposed in this thesis, CHAI3D will be used primarily to interface
with the haptic device, to apply the implementation of the finger-proxy algorithm and for
collision detection of the haptic tool with objects in a virtual world.

24

4.2.3 Data and Communication

Control data needs to be communicated between various components at some point or
another. That’s why some kind of protocol for data (de-)serialization and structuring as
well as transmission is needed.

Data Serialization and Deserialization Protocol

There are a lot of popular data formats such as JSON, CBOR and XML. All of them are used
both for configuration files and actual structured data payloads, even though they introduce
lots of overhead in terms of syntactical symbols and flexible layouts (e.g. whole keys are
stored for key-value pairs) in exchange for being at least somewhat readable by humans.
While that works just fine, optimization is not done to its fullest potential and bandwidth
is wasted just to send metadata that is most of the time known by both communication
parties already, anyway. That is unfortunate on large scale networks with ever rising node
numbers and/or constrained means of communication. Also, bandwidth is theoretically not
the only wasted resource. At the end of the day, parsing and generating complex human-
readable formats needs more computational power and memory than binary formats or
even raw C structs, and the compiled source code needed is also larger [39]. Even though
most drones have onboard computers that are not constrained enough that computation,
memory or storage conflict with using heavier data formats, it does not hurt to be more
efficient in these aspects, too, to save money (less memory chips) and energy (more flight
time with same battery capacity).

Using raw C structs is a possibility, but is generally dangerous if one expects to run the
software on different platforms due to different endianness and padding requirements. Flight
controllers of quadrotor drones often run on ARM-based processors, especially open-source
flight controllers such as PX4 [40], while other software components will be developed and
may run on x86-based systems. Additionally, language incompatibility is lowered by using
C structs or at least more complicated than a well-defined data format with own primitive
types, but you might want to implement certain parts of the implementation in other
languages than C or C++. Being compatible over language barriers also goes together very
well with the extendability requirement set in Section 4.1.5.

The FlatBuffers library tries to solve the beforementioned problems altogether. It is an
open-source cross platform serialization library for C++, Go, Java, Python and lots of other
languages [41]. Originally created at Google for game development and other performance-
critical applications, the library aims to be efficient in terms of computation, speed, memory
and code footprint. It does that by avoiding the necessity of allocations other than the
binary buffer of the data you want to store, while trying to still be flexible e.g. by supporting
optional fields.

To accomplish being usable across different languages, and also to provide the means to
develop a clear and structured data model, the FlatBuffers library defines a schema language
called Interface Definition Language (IDL) which has a syntax similar to C. IDL can be
used to write data schemes in an easy way as a composition of tables (similar to objects),
structs (special type of table), arrays, enums, unions and some more [42]. Tables and
structs contain fields that can be of the types mentioned above and primitives. Listing 4.2

25

shows an exemplary schema file that makes use of the most important syntactical elements.
Once schema files are present, they can be converted to actual source code for each of the
supported languages, with a tool called flatc that the library brings with it [43]. Said
generated source code can then be used in own application code, including well-defined
classes with smart memory management and implementations of (de-)serialization. For
C++ which is the language of choice for the thesis implementation, header-only libraries
are generated.

enum Degree : byte { None, Bachelor, Master }

struct Room { building:short; num:uint; }

table Student { name:string; num:uint; degree:Degree =
table University { students:[Student]; rooms:[Room]; }
root_type University;

Bachelor; }

TUR W N~

Listing 4.2: FlatBuffers schema file that models data of a university and its students as an example.

Including the generated header files together with the FlatBuffers library header gives a
software developer two ways of interfacing with buffers and data models respectively: the
base API that works directly on the allocated memory, avoiding copies where it can, and an
object-based API that can be generated optionally with a compiler flag. The latter provides
a more convenient and object-oriented way of using FlatBuffers at the expense of being less
memory efficient and more computationally expensive due to packing and unpacking of the
values into C++ objects and containers. Both ways are demonstrated shortly in Listing 4.3
and Listing 4.4 by showing the different codes that are used to fill a buffer that is of type
University (the one that is defined in Listing 4.2). Due to the simplicity of the example,
the convenience impact is not really apparent, but for complex models the object-oriented
API definitely makes the programmer’s life easier. Reading a buffer is similar in both ways,
even though mutating values is generally easier when using the object-oriented API.

1 flatbuffers::FlatBufferBuilder builder (1024);

2

3 auto name = builder.CreateString("”Jon-Mailes Graeffe');

4 auto degree = Degree_None;

5 auto studentOne = CreateStudent (builder, name, 219717, degree);
6 std::vector<flatbuffers::0ffset<Student>> studentsVector;

7 studentsVector.push_back(studentOne);

8 auto students = builder.CreateVector (studentsVector);

9

10 Room rooms_array[] = { Room(29, 333) };

11 auto rooms = builder.CreateVectorOfStructs(rooms_array, 1);
12

13 auto university = CreateUniversity(builder, students, rooms);
14

15 builder.Finish(university);

16 uint8_t* buffer = builder.GetBufferPointer ();

17 size_t size = builder.GetSize();

Listing 4.3: Exemplary code on how to use the generated source code of the schema defined in
Listing 4.2 to serialize an instance of the University type while using the base API
(the more efficient one).

26

auto student = new StudentT();
student ->name = "Jon-Mailes Graeffe";
student ->num = 219717;

student ->degree = Degree_None;

auto university = new UniversityT();
university->students.push_back(std::unique_ptr<StudentT>(student));
university->rooms.push_back (Room (29, 333));

OO Ui W

©

10 flatbuffers::FlatBufferBuilder builder (1024);

11 builder.Finish(University::Pack(builder, university));
12 uint8_t* buffer = builder.GetBufferPointer ();

13 size_t size = builder.GetSize();

Listing 4.4: Exemplary code on how to use the generated source code of the schema defined in
Listing 4.2 to serialize an instance of the University type while using the object-based
API instead of the base API (the more convenient one from a developer’s perspective)

Communication Protocol

For the CoAP implementation, libcoap is used which is an open-source C library that aims
to be multi-platform, meaning it can be used on Portable Operating System Interface
(POSIX) operating systems such as Linux and Windows as well as on operating systems for
embedded devices like Contiki, TinyOS, RIOT OS and more [44]. It is the perfect match
due to its maturity and lightweightness, with the latter theoretically enabling it to be run
on drone flight controllers directly. Both server and client functionality is implemented,
and Datagram Transport Layer Security (DTLS) is supported, so adding encryption to the
thesis implementation is possible with reasonable effort.

Example implementations of both a CoAP server and client are provided in Appendix A.3
in case the reader is interested. Later in the thesis it will be apparent that the thesis
implementation contains an abstraction, which does not necessarily require knowledge of
how to implement libcoap even when developing extensions for the implementation, though.

4.2.4 Other Dependencies

In addition to the dependencies listed above, there are mostly two libraries that are used
in the thesis implementation.

First in the list is the Point Cloud Library (PCL) which is a large open-source framework
providing numerous C++ libraries for 2D /3D image and point cloud processing [45]. It is
used for the data models it brings for point clouds and 3D meshes, as well as the various
implementations that transform point clouds to 3D meshes.

Secondly there is the wavelib library which is a small open-source C implementation of
various wavelet-based transformations such as FWT [46]. It does not matter too much
right now what this is exactly, but it is used for compression of messages in the thesis
implementation which is explained in more detail in Section 4.4.1.

27

4.3 Concept

A connection needs to be established between the haptic device and the drone from an
abstract perspective. The 3D Systems Touch™ is connected via USB and its drivers are
available for Windows and Linux. So there must be at least one software component,
that runs on Windows or Linux, and that the haptic device can be plugged into (wired
connection). This software component does need to run a loop that updates force feedback
of the haptic device and possibly reads positions and orientations from the device as well,
in a frequency of faptics as explained in Section 4.1.3.

Even though a simulator is used to test the implementation in its first iteration, one needs
to think about how interfacing with a real drone could work in the future. Interfacing
with a drone to control it wirelessly is different from drone to drone, but is usually done
over a 2.4 GHz radio, more specifically over WiFi (IEEE 802.11). Typically, either the
drone manufacturer or the drone’s flight controller provides software to run on the drone
to control it and retrieve sensor data over WiFi directly. For example, drones that run
the open-source flight controller PX4 [40] have a MAVLink interface that can be used to
control the drone [47], while others may have proprietary ones. Or the drone does not have
any interface to control the drone yet, in which case it is needed to add another software
component that is able to run on the drone itself.

Because of the possibility that a software component needs to be developed to run on a
drone’s onboard computer in the future, and also due to the requirement that it should be
easy to make the whole thing work on real hardware drones, it makes sense to add a second
software component that might or might not run on a real drone in the future. The second
component is just used to interface with the drone without any extensive calculations or
I/0, which eases adapting to drone hardware because one only needs to implement a small
software component that just bridges the gap between the first software component and the
drone in use.

So, the implementation shall have two major software components: the haptics-brain com-
ponent which interfaces with the haptic device and does most of the calculations and com-
putationally intensive tasks, thus called the brain of the operation, and the drone-controller
component. The drone-controller component translates commands given by the haptics-
brain component so that coordinates or nominal values are converted to fit the drone inter-
face, and sends them to the drone. Because the drone-controller component is specific to
AirSim, let’s call it drone-controller-airsim so that if there will be more implementations,
one can distinguish between them.

On a side note, it may be interesting to know that AirSim actually has a MAVLink client
that can relay commands sent to AirSim to real hardware MAVLink-compatible drones [48].
In other words, at least for proof-of-concept evaluations, it is possible to run AirSim as a
bridge to real drones while utilizing the drone-controller-airsim component without the need
to implement another drone-controller component.

Now that both software components have been established: how is the human operator
supposed to control the drone? Or in other words, how does the haptics-brain component
interpret the input of the 3D Systems Touch™ haptic device and translate it to commands
that control the drone? Well, for that, several control modes are invented that let the
operator control the drone in different ways. It is not known yet what’s the best way on

28

how to use a haptic device as an input device for drone control, and the control modes
are evaluated later in the thesis to get an idea about the user experience and advantages
and/or disadvantages of the control modes.

The components itself will be revisited in Section 4.4 later on, and the actual structure of
the software will be made more clear by various diagrams. Before that though, the control
modes will be introduced to get an understanding of the general idea on how to control the
drone with the haptic device in Section 4.3.1.

4.3.1 Control Modes

The implementations of the control modes executed in the haptics-brain component are
responsible to take the input of the haptic device, mainly the position and orientation of the
haptic tool, and generate commands that are then sent to the drone-controller component
and are formatted in a common format that all implementations can work with. When the
commands arrive on the drone-controller component, all values are converted to sensical
values — coordinates in the coordinate system of the haptic device are mapped onto the
drone’s coordinate system, and other linear values such as thrust are normalized by a scalar
so that they are subjectively the same across different drones. For example, it shall not
happen that a change of a centimeter of the input to the haptic device lets one drone crash
into a wall a few hundred meters away and lets another drone barely move at all.

Said conversions can mostly be expressed mathematically, trivially by multiplication with
constant scalars or vectors that are specific to a drone-controller implementation. Let’s
define the names of those that are used for every control mode now, in Table 4.3 which
also contains some short descriptions on what they are used for and the values that are
used in the implementation of drone-controller-airsim. The specific values are the result of
experimentation and trying out values that seem to provide a good user experience, which
obviously are very subjective and can vary greatly depending on the use case, flying environ-
ment, haptic device, drone model et cetera. Some of the scalar and vector multiplications
used in this thesis and its implementation could be aggregated mathematically by using
transformation matrices that contain translations and rotations, but since this is not done
in the current implementation and for the sake of simplicity, this is avoided for now.

All control modes implement the two buttons of the 3D Systems Touch™ haptic device.
Pressing the first button for a bit arms or disarms the drone respectively, meaning turning
it on and off. The second button’s long press toggles pausing all inputs to be commanded
to the drone, so operators can remove their hands from the haptic device safely.

Currently, four control modes exist: the Manual Flight control mode, the Velocity Joystick
control mode, the Target Positioning control mode and, last but not least, an extension of
the former, the Terrain-Aware Target Positioning control mode. All control modes will be
explained in detail below.

29

Name Symbol Value (AirSim) Usage
T
Axis Correction ﬁ (—1 1 —1) Adjust directions/sign of vec-
tor components (axis align-
ment)
T
Velocity Scaling ﬁ (1 1 1) Velocity normalization (across
different drones)
T
Position Scaling ﬁ (30 30 30) Distance normalization
(across different drones)
Yawing Rate Scaling YsS 1.0 Yawing rate normalization

(across different drones)

y T

Haptic Force Multiplier HM (—50 —50 —50) Multiplier on manual haptic
force applications (stiffness,
springiness)

Table 4.3: Constant scalars and vectors used for corrections and coordinate mappings in most control
modes, with their names used in the implementations, symbols used in mathematics and
a brief description for what the value is used.

Manual Flight

The first control mode is really basic as it just takes the pitch and roll of the haptic tool
(stylus) and applies them to the drone in the control frequency feontror that is specified in
Section 4.1.1. Controlling the yaw is a bit different to make flying easier. The problem is, if
the operator would also control the yaw with the haptic tool directly, making a 360° turn in
terms of yaw would be basically impossible — at least with the used haptic device. The 3D
Systems Touch™ does not allow the stylus to be rotated a full 360° in yaw mechanically,
and due to the fact that the haptic tool is a stylus that has a specific length in one direction
as can be seen in Figure 2.3, it is not possible to apply full or even more than half yaw at
every possible position. Because of that, the yaw of the haptic tool translates to a yawing
rate once outside of a deadzone, which basically means that before a minimum yaw of the
haptic tool, the yawing rate is 0 to make going straight ahead easier. So, the operator can
command the drone to do 360° turns in yaw even with less than half of the full yaw applied
to the haptic tool, and the higher the absolute yaw value is, the faster the drone will yaw
per second.

Throttle is determined by the distance of the haptic tool position to zero on the z axis
(vertical) of the haptic device, so speed is very manual in a way that the operator needs to
find out the minimum throttle at which the drone becomes airborne, but the operator also
should not give maximum throttle as it could lead the drone to uncontrollable speeds in an
instant. It bears similarity with driving a car with manual transmission where one needs
to balance the clutch pedal to reach a biting point, so basically letting go the minimum
distance of the pedal to start rolling, but one must not let go of the clutch pedal too quickly
because the car might stall or go forward very abruptly.

Mathematically, all of the above can be expressed as a function dsyp (desired state function
for Manual Flight control mode) that takes the position vector and rotation matrix Ry of

30

the haptic tool as the input and that outputs the desired drone orientation in pitch and roll
angles as well as a yawing rate yry and a throttle scalar throttlegy:

. ,@%YS * yr(Rp) yaw Ratey
h
A * p(Rh) TOlld
dsyp : R? x R 5 R dsyp | [yn | R | = v — ‘
2 zﬁz x1(Rp) pitchg
i Zp throttley
min (max (5%, 0),1)

yr: R3><3 — R, yT(Rh) = y(Rh) — Ymin if y(Rh) > Yinin
0 else

y: R¥3 - R, y(Ry) = arctan2(Ry,,,, Rp,,)

p . R?)X?) N R,p(Rh) = arctan2 <_Rh317 R%L:),Q + R2)

h33

r:R¥3 5 R r(Ry) = arctan2(Ry,,, Rhy;)

In the yr function, Y;,;, defines the minimum yaw of the haptic tool that is required in
both directions to apply any yawing to the drone. When the yaw of the haptic tool reaches
Yin, yaw is applied depending on the yaw value. This constant therefore defines the
beforementioned deadzone. MT is the maximum throttle on the haptic device, meaning
the maximum value the haptic tool can be positioned on the z axis, so that throttley is
always a number between zero and one. Extracting the yaw, roll and pitch angles from the
rotation matrix that is given by the haptic device is done with the y, p and r functions
according to [49].

Haptic feedback is minimal on this control mode. The haptic device forces the tool to always
stay on the vertical z axis, which makes it easier for the operator to adjust the tool’s angles.
Also, negative z positions are forced to be positive because in the current configuration it
is not possible to give negative throttle. The force vector applied to the haptic tool and
subsequently to the operator’s hand can also be written as a function f fyr (force feedback
function for Manual Flight control mode), more specifically a function of the position the
haptic tool points to:

T
Th HM © (xh h zh) if 2, <0
. R?) Ri’) o
fAr R =R ffur | v] | =91 ,— N T
o (HM xxp HM,*y, =) clse

©: element-wise multiplication

As the name of the control mode implies, it is a very manual way of controlling the drone
and is similar to direct control in teleoperation. Strictly speaking, direct control is not
entirely the correct term though, because there are still PID controllers that are running on
the drone to achieve a specific yaw, pitch, roll and throttle by taking inputs of a gyroscope
and adjusting the four motors accordingly. It would be direct control entirely if and only
if the operator would control the speeds of the four motors directly, which sounds very
difficult to do from the perspective of the operator.

31

Velocity Joystick

Secondly there is the Velocity Joystick control mode which is named according to how it
works. It is like a joystick on a game controller, but three-dimensional: the operator steers
the haptic tool (stylus) in the direction the drone is supposed to fly, setting the desired
velocity the drone is going to and how fast it is. The higher the distance from haptic tool
position to zero point on the haptic device, the faster the drone will fly, because the vector
will be greater in length.

Mathematically, the vector from zero point of the haptic device to the position the haptic
tool points to is just scaled up or down in terms of length, and can be directly commanded
to the drone in the control frequency feontror that is specified in Section 4.1.1:

ﬁx*ﬁx*wh Vg

xp,
dsvyy : Rg X R3X3 — R4,d8VJ Yn SRy | = I@y *V y*Yn | — v,
2 AC, *x VS, * z, Vd,,
Y S« yr(Rp) yra

yr R3X3 — R, yT(Rh) = y(Rh) = Ymin if y(Rh) > Yinin
0 else

y: R & R, y(Ry,) = arctan2(Ry,, , Rp,,)

Feedback in terms of haptics is given in the way that steering into a specific direction
becomes harder for the operator, or in other words the counterforce gets higher in value,
the longer the distance of the haptic tool is to the zero point. This creates an effect almost
like with gas pedals in cars — the operator can judge more easily how fast the drone is
commanded to fly without any need for a tachometer and more force is needed to fly faster,
which gives an intuitive feeling about the desired velocity. The calculation of the force
applied to the haptic device is trivial, as it’s just a multiplication of a constant with the
current position of the haptic tool:

Th Tp
—
fivs R3S R3, ffvs Yh =HM ® | yn ®: element-wise multiplication
Zh Zh

Additionally to the button events that are present on all control modes, pressing the first

button shortly increases the velocity scaling multiplier ﬁ, while the second button de-
creases it.

Compared to the Manual Flight control mode, this mode is less direct control in teleoper-
ation terminology as it is not directly tied to a subset of the aircraft controls, and more
supervisory control, because the operator defines a velocity goal the drone is trying to
achieve autonomously.

32

Target Positioning

As a third option, there is the Target Positioning control mode that fundamentally differs
from the modes before. When using the Manual Flight or the Velocity Joystick control
mode, changing the input to the haptic device results in a change of the behaviour of the
drone almost immediately, feoniror times a second. This is not the case with the Target
Positioning control mode, as the operator can move the haptic tool freely without influenc-
ing the drone. Once the desired position has been found and is fine tuned, the operator
presses the first button on the haptic tool for a short time which commands the drone
to autonomously fly to the desired position. Usually operators then wait for the drone
to reach the target position, and command to move again once a position is hold stably.
The advantage of this Move-and-Wait strategy that was shortly introduced in Section 2.1
is that, regardless of any delay or latency that occurs between operator and teleoperator,
movement of the drone will already be done before the next command is given, and new
commands do not depend on the immediate state of the drone which might not be known
to the operator yet due to the time delays. While the operator chooses the desired position,
the drone is hovering, meaning it tries to not move in any direction, maintaining a steady
height and stabilizing the aircraft on its own.

To generate a command on request, the position of the haptic tool in the haptic device
coordinate system is simply mapped to the local coordinate system around the drone which,
depending on the flight controller, can be chosen to be arbitrarily large:

f@ *ﬁ * Th Tq

Th
dstp : R® x R¥® — R dsrp | |y | Ru | = ?y * ﬁy *Yn [— | Yd
2 /ﬁ *ﬁ * 2p Zd
Y S« yr(Rp) yra

yr: R3X3 — R,yT(Rh) = y(Rh) — Ymin if y(Rh) > Yinin
0 else

y: R¥3 - R, y(Ry,) = arctan2(Ry,, , Rp,,)

As simple as this control mode is, one challenge for the drone operator definitely is to guess
to which position in the drone’s environment the choice of position in the workspace of
the haptic device is mapped to. That’s why it makes sense to offer some kind of visual
assistance on where the drone is going to fly to. In teleoperation this is called a predictor
display, as it displays a prediction of the teleoperator’s state if the command would be
applied. For the thesis implementation, this is trivial because a simulator is used which can
just visualize the position the drone would fly to in the rendered 3D world. However, this
is not as easy with real drones. One could imagine overlaying a live video feed of a camera
attached to the drone that is presented to the drone operator with a mostly transparent
picture containing a visualization of the target position in a virtual 3D world.

There is no haptic feedback in this control mode so that the operator can easily move the
haptic tool in the workspace of the haptic device. However, a constant upward force G
applied to counter gravity that pulls down the haptic tool due to its weight:

33

Th =Ty T |)
HM © if reset in progress
Frre RS R | [| | = (en wn =) prog
zn Cﬁ else

®: element-wise multiplication

That’s useful because the haptic tool can be positioned somewhere safely without the need
to be continuously held by the operator’s hand. Also, pressing the second button on the
haptic device shortly triggers a reset of the haptic tool to the zero point of the haptic device.

For this control mode, the requirements to control frequency and latency do not apply as
they do not impact the operator’s control performance. In a way, it removes the human
from the control loop and only demands to set an overall goal on what the flight controller
should do. This is, without any doubt, supervisory control in its purest form.

Terrain-Aware Target Positioning

The Terrain-Aware Target Positioning control mode is an extension to the Target Position-
ing control mode. Calculations are the same as for the Target Positioning control mode,
and the notes about predictor displays also apply to this mode. All previous control modes
only translated inputs from the haptic device, that are read by the haptics-brain compo-
nent, to commands which in turn are transmitted to the drone-controller component. In
addition to that, this control mode involves sensor data from the drone that is gathered by
the drone-controller component and sent to the haptics-brain — bidirectional instead of just
unidirectional communication.

For this thesis, focus is set onto a LIDAR sensor that is attached to the drone in the
simulator, providing a point cloud to the haptics-brain component in a specified frequency.
The point cloud is then optionally converted to a mesh, and either the point cloud or the
mesh is rendered on the haptic device haptically. Objects or obstructions that are near the
drone are scanned by the LIDAR sensor. The resulting point cloud is added to a virtual 3D
world that is represented by CHAI3D’s cWorld class. CHAI3D offers to render this virtual
3D world onto the haptic device’s workspace, which means that if the operator moves the
haptic tool close enough to an object (in this case, a point of the point cloud or a triangle
of the mesh), a resistive counterforce is applied.

Figure 4.5 shows screenshots of the environment being scanned by the LIDAR sensor in
the simulator (left picture) and the resulting point cloud that can be felt haptically when
present (middle picture), visualized by the already finished implementation of the haptics-
brain component. The picture on the right shows the point cloud being converted to a
mesh, which closes gaps between the points of the point clouds. More information about
the CHAI3D library and how it works fundamentally is provided in Section 4.2.2.

4.4 Implementation

The software that is part of the thesis contribution is written entirely in C++14. As the
build system, CMake is used and even though the software is specifically developed and

34

Figure 4.5: Screenshots that show how the drone’s LIDAR scanner generates a point cloud represent-
ing the environment in the simulator (left picture), which is then sent to the haptics-brain
component and haptically rendered by CHAI3D (middle picture). Optionally, the point
cloud is converted to a mesh (right picture). The gray ball on the middle and right
picture is the tip of the haptic tool of the haptic device.

tested to be working on Microsoft® Windows 10 because the device drivers of the 3D
Systems Touch™ haptic device have proven themselves to be working best on Windows,
using CMake will make switching to other platforms easier as it works on e.g. Linux and
Mac OS out-of-the-box too. CMake generates ready-to-use projects for various toolchains
and IDEs.

For the thesis implementation, the Microsoft® Visual Studio 2019 IDE and its toolchain
(compiler, linker et cetera) is used. Therefore the CMakeLists.txt files, that are the project
configuration files for CMake, might be partially specific to that IDE, but can be ported to
another toolchain or IDE with little effort. Due to the enormous effort of setting up PCL
as a dependency manually with CMake, it was convenient to additionally add vepkg to the
mix, which is an open-source cross-platform packet manager that focuses on distribution of
C and C++ libraries. Vcpkg integrates nicely with CMake, but it is only used for setting
up PCL as a dependency. So if you don’t want to use the Terrain-Aware Target Positioning
control mode, it is possible to spare the hassle of installing vepkg and downloading PCL as
a dependency, which is very large in size. In addition to that, Git is used for source code
management and versioning.

Figure 4.6 shows how the software is structured, which dependencies the individual software
components have and over which protocol they communicate. Boxes with solid borders each
represent a component that is structured into its own individual project by CMake, and that
is part of the thesis contribution. Dash-bordered boxes represent external components that
are also structured into various projects, and are all the dependencies of the implemented
components.

As can be also seen in Figure 4.6, the implementation is primarily split into two big com-
ponents — the haptics-brain component and the drone-controller-airsim component. Those
are individual programs that can be executed independently from each other on different
computer systems, and are designed to work across LAN or even WAN networks.

35

r--g>=---- Haptic Input Commands drone-controlier i "TTTTTTTC !
' O —— . . > - S m— '
: % ‘< haptics-brain < airsim + AirSim :
""""" Force Feedback T Sensor Data T frommmmmmees

' CHAI3D '< _____ . drone-controller- - ---- _____ > AirLib

; common :

. PCL '< ----- common

O [y »| base classes, transports, [€-----~ Legend

models, encodings, utils
j . Data Flow Dependency

Yoy — >
------ » Flatbuffers | !

PR Internal External

oottt N Component ~ Component

1 libcoap < R .

L wavelb <- L ———— troree- ;

Figure 4.6: Diagram showing the various components of the implementation and their dependencies
and communication.

4.4.1 Messaging

Messages are used for the communication between the haptics-brain and the drone-controller
components. They contain mostly control data such as desired velocity or position generated
by the various control modes that are to be sent unidirectionally from haptics-brain to
drone-controller, with the exception of the Terrain-Aware Target Positioning control mode
introduced in Section 4.3.1 which also sends sensor data the opposite way occasionally. Said
data is modeled by nested FlatBuffers tables and arrays, which are introduced in the next
subsection.

Because messages are to be sent and received by both main components, the messaging
implementation is included in the common project that is linked by both haptics-brain and
drone-controller. It consists of an abstract class Transport that defines a fairly abstract
interface for both sending and receiving messages through simple-to-use functions, as can
be seen in Figure 4.7. The receiving logic of the message, more specifically the code using
the receiveMessage function, is responsible for directing received messages (commands
or sensor data) to the corresponding implementation by itself. By having that abstract
interface, communication is made more convenient from a developer’s perspective and also
keeps extendability in mind. It is straight-forward to implement another transport with
another communication protocol without changing any code that utilizes messaging.

The messages need to be serialized into a byte array in order to send them via a specific
protocol implementation, and also they need to be deserialized on the receiving side, for
which FlatBuffers capabilities are used. Data (de-)serialization is implemented by classes
implementing the abstract class Encoding. Implementations of that class that are part of

36

@ Transmitter @ Receiver

© sendMessage(message, confirmable) : void © receiveMessage(timeoutMs) : MessageT

@ Transport

< Encoding* encoding

© ctor(encoding)

?

© CoapTransport
© coap_context_t* serverCoapCtx

© coap_context_t* clientCoapCtx

© ctor(encoding, bindAddress, remoteAddress, ...)
< initServer(bindAddress) : void
< initClient(remoteAddress) : void

Figure 4.7: UML class diagram showing the class hierarchy of Transport class, which is the interface
for messaging in the thesis implementation.

the thesis implementation are further investigated in the last subsection of this section.
An instance of a specific Encoding subclass is passed to the constructor of a Transport
implementation as sort of a dependency injection.

Currently, one transport is implemented with the underlying protocol being CoAP in the
CoapTransport class. Libcoap is used as the CoAP implementation, and because CoAP
uses a request /response model and the main components may communicate bidirectionally,
both the haptics-brain and the drone-controller component act as a server and a client.
That’s why CoapTransport needs an address to bind on and a remote address to send to
on instance creation, on which the client gets initialized and the servers start to serve a
resource on the following endpoints, respectively:

PUT coap://<drone-controller-ip-address>:5685/message
PUT coap://<haptics-brain-ip-address>:5686/message

Serialized messages containing commands or sensor data are sent as a payload of a CoAP
message by issuing a PUT request to the remote endpoint, either of type NON (default) or
as a CON message. PUT stands for an idempotent request, meaning that it can be issued
multiple times with the same effect — this might sound wrong due to the fact that the drone
might be in a different state after each request, however commands will have the same effect
on the drone even when it’s current state changes with every request, e.g. setting a velocity
goal or a target position to fly to. The drone’s state changes, but not the effect.

37

@ FwtEncoding

© Configuration* Config
O wave_object wave

@ Encoding © RawEncoding E goug:e: sncgginggamp:es @ FwtEncoding.Configuration
G ST IO S © unsigned int FrequencyDivid
= <1 yDivider
© encode(message) : byte array giMessageTiimessagel] © const char* Wavelet
© decode(data, len) : MessageT © ctor() @ ctor(config) © unsigned int J

= sample(message, num) : void

= compressSamples(payloadType) : size_t
= decompressCommands(message) : void
= desample(payloadType, fieldldx) : void

Figure 4.8: UML class diagram showing the class hierarchy of the classes RawEncoding and
FwtEncoding, whose implementations are responsible for data (de-)serialization.

Data Models

1 include "command. fbs"; include "sensordata.fbs";

2

3 union Payload {

4 MoveVelocityCommand , ArmDisarmCommand, SetAnglesThrottleCommand,
5 MovePositionCommand, SetPositionPreviewCommand, PointcloudSensorData,
6 SwitchPointcloudSensorCommand

7}

8

9 table Message {

10 payloads:[Payload];

11 3}

12

13 root_type Message;

Listing 4.5: Schema file for messages and payloads in FlatBuffers IDL language.

As mentioned before, messages are modeled by tables and arrays as FlatBuffers schemes.
More specifically, a message is modeled by a table that contains one or more payloads. The
corresponding FlatBuffers schema can be found in Listing 4.5. A payload can be either
a command that gives instructions to the drone or sensor data that is gathered by the
drone-controller component, and it’s represented by a union. The union makes it possible
to let the payloads be of different type, even though FlatBuffers tables and structs do not
support inheritance whatsoever.

In the source code and in all diagrams regarding the topic, classes or types representing
messages, commands et cetera are suffixed with the letter T, for example the class MessageT.
The reason for that is simply that the implementation solely uses the object-oriented API of
FlatBuffers that is explained in Section 4.2.3, and the T stands for the object representation
of the specific type.

Compression

To serialize MessageT objects into byte arrays that can be sent by the underlying com-
munication protocol by the Transport implementation from the haptics-brain side, and to
deserialize byte arrays back to object representation by the drone-controller component, an
instance of a class inheriting from Encoding is needed that provides encode and decode
functions. As can be observed in Figure 4.8, there are two implemented sub classes of
Encoding called RawEncoding and FwtEncoding.

38

Wavelet name Iteration depth (J) Compression rate

sym2 1 4/6 = 0.6
haar 1 3/6=0.5
haar 2 2/6 =0.3

Table 4.4: Compression rates for different configurations of parameters applicable to FWT-based
encoding that are provided by the thesis implementation and their resulting constant
compression rate (number of commands that are actually sent divided by the number
of sampled commands), assuming the number of commands that are sampled before
compression is six (FrequencyDivider = 6).

Class RawEncoding simply implements the encode function so that it uses the FlatBuffers
library to build a byte array from a message object and the decode function to reverse that.
How that works fundamentally is already explained in Section 4.2.3.

Section 4.1.4 suggested compression to lower the required data rate. To enable com-
pression in the thesis implementation, class FwtEncoding implements a wrapper around
RawEncoding that compresses a subset of the existing commands by applying the Fast
Wavelet Transform (FWT) to a series of commands, similar to what is done to kinesthetic
data in the case study presented in [19]. This thesis is not going into too much detail about
how the FWT works (for that please refer to [19] and its sources), but generally compression
is realized by sampling a series of commands and applying FWT with a specific wavelet
to their values, effectively reducing the number of commands sent ultimately. So, instead
of sending each command directly, a specific number of commands is sampled, then the
sampled commands are put into the FWT compression algorithm which outputs approxi-
mation coefficients in a number less than the sampled commands, and those approximation
coefficients are actually what is sent, after the compression was applied. The receiving side
then uses the inverse FW'T function to generate the original number of commands with the
approximation coefficients as input. This process repeats itself over and over. Advantageous
is that the compression rate, which is the ratio between the number of commands that are
actually sent and the number of the sampled commands, is constant for a specific value
of parameter J (iteration depth of FWT algorithm), the number of sampled commands
(determined by FrequencyDivider option in source code) and the same wavelet (a wavelet
is a named wave function that is used in the FWT algorithm).

Multiple configurations with different wavelets and parameters exist in the thesis implemen-
tation, namely the header file of the FwtEncoding class, which lead to different compression
rates. Table 4.4 shows the compression rates for the configurations provided in the source
code, assuming the number of commands to sample before compression (FrequencyDivider
option in source code) is set to six.

Please note that the FwtEncoding class only applies the beforementioned compression to
commands that are of type SetAnglesThrottleCommand or MoveVelocityCommand, which
are the commands sent frequently by the Manual Flight and Velocity Joystick control modes,
because those are the only control modes that continuously send commands. Compressing
the infrequent commands that are sent by the Target Positioning and Terrain-Aware Target
Positioning control modes would not make a lot of sense, because sampling is not possible

39

(operators want the drone to execute their commands one at a time) and network bandwidth
is not as relevant (commands are only sent on request, and the time of transmission does
not matter too much).

4.4.2 Component haptics-brain

The haptics-brain component is the one that does most of the computations and communica-
tion. The main function of the component initializes the haptics system that is implemented
in the Haptics class, of which the inner workings are explained in the following subsection.
It also instantiates a class inheriting from the Encoding class such as the ones shown in
Figure 4.8 and passes it to the used transport implementation. Only CoapTransport is
currently available. Once the CoapTransport object has been initialized, or in other words
the underlying CoAP client and server are configured, it gets passed to the control mode
that is the default one on startup. How the control mode implementations work is also
explained in one of the following subsections.

After all the systems such as haptics and the control mode are started, a user interface is
presented in a console window, which allows switching control modes on the fly.

Haptics

The starting routine of the Haptics implementation starts a thread, referred to as the
haptics thread in the rest of the thesis. Said haptics thread is responsible for running the
CHAI3D haptics loop as explained in Section 4.2.2. In each iteration of the loop, the state of
the button switches on the 3D Systems Touch™ haptic device is read. Should a control mode
be already initialized and ready to go, it also runs the calculateHapticFeedback function
that is implemented by the running control mode, which can be observed in Figure 4.10.
The function is given to the Haptics object by setting a function pointer (as kind of a
dependency injection), which is done by the user interface logic of the haptics-brain’s main
function. In the calculateHapticFeedback function, that is in fact run by the haptics
thread as shown in Figure 4.9, the respective control mode reads the position and optionally
rotation of the haptic tool (stylus) of the haptic device, does its calculations and tells the
haptic device driver what force feedback should be applied by utilizing CHAI3D’s API. The
force feedback is either calculated manually and a force vector is being told to the device
driver, or the cWorld abstraction is used instead, which does the calculation of the forces
by itself.

When taking a look at the source code or the example haptics loop in Appendix A.1, it is
noticeable that there is no waiting logic that sleeps a certain duration to achieve the desired
haptics frequency fraptics specified in Section 4.1.3, as it is done in the logic of the control
modes. That is because applying the force, regardless of it being done manually or with
the cWorld abstraction, implicitly enforces timing due to the haptic device driver waiting
until the next update cycle of the servo loop. Because of that, synchronization between the
haptics loop and the haptic device is done implicitly. This needs to be taken into account
while evaluating, e.g. interpreting latency measurements.

40

Haptics Thread

haptics-brain

Shared Memory Control Mode Thread

Sensor Thread

!
“:mumnm Loop (~ 1000 Hz)

drone-controller-airsim

Main Thread

_>:m_3 _ ﬁ Haptic _um<_nm_

Request of Haptic Data (USB Serial)

| |
I I
| |
L L
[[
I I

Response with Haptic Data (USB Serial)

calculateHapticFeedback()

]

opt

Reading Point Cloud

Computing Forces with CHAI3D's cWorld

]

Send Force Feedback (USB Serial)

Storing Haptic Data

i
i
I
i
l

[for Terrain-Aware Target Positioning only]
l
i
i
i
i
i
|
T
l
I
i
s
l
{
|
i
|

Haptics Thread

“no:n_.o_ Mode Loop (~ 60 Hz)

I
1 Reading Haptic Data !

Generation of Message
(Calculations, Serialization, ...)

1

CoAP PUT NON Request

i
i
i
!
! (Message with Commands)
i
i
I
i
i
i
I

RPC Reques

(Movement Command)

RPC Respo|

nse

i
l
i
i
i
!
opt [for Terrain-Aware Target Positioning only]

I
!
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
I
I
L

d
I
!
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
I
I
=

Storing Point Cloud

CoAP
(Mess:

PUT CON Request
age with Sensor Data)

RPC Reques

(Sensor Data)

RPC Respo|

nse

CoAP A

CK Response (2.04 Char

ged)

Convers
+ optior

P

ion of Point Cloud
nal Triangulation

j
Shared Memory

Control Mode Thread

Sensor Thread

j
Main Thread

T,:m:: _ ﬁzmnn_n Device

Figure 4.9: UML sequence diagram that shows the communication between components as well as the data flow between threads. The diagram is

specific to the CoapTransport implementation and drone-controller-airsim as the drone-controller implementation.

41

@ Configuration

© double CommandFrequency
© bool UseAccurateScheduling
© long long ShortSwitchPressDuration
9 long long LongSwitchPressDuration

© DelayBetweenCommands(void) : double

@ ManualFlightControlMode

@ ControlMode

© Configuration* Config
© Haptics* Haptics © ctor(config, haptics, transport)

© Transport* Transport /
© bool Paused

O std::string Name . .
@ HapticFeedbackCalculator O std::thread* thread © VelocityJoystickControlMode
calculateHapticFeedback(void) : void © calculateHapticFeedback(void) : void
© start(void) : void

© stop(void) : void

< tick(void) : void W\
< run(void) : void Positioni
& runSwitchLogic(void) : void © TargetPositioningControlMode
< onSwitchPressed(number, longPress)

© ctor(config, haptics, transport)

o ctor(config, haptics, transport)
© commandMoveToPosition(void) : void
© resetToZeroPoint(void) : void

© TerrainAwareTarget
PositioningControlMode

© ctor(config, haptics, transport)
© commandMoveToPosition(void) : void
© resetToZeroPoint(void) : void

Figure 4.10: UML class diagram showing inheritance tree of control mode classes.

Control Modes

Control modes are responsible for the communication between the haptics-brain and drone-
controller components. They implement the calculation of the haptic feedback in the
calculateHapticFeedback function that is run in the haptics thread. Also they start
an own thread when being started, which will from now on be referred to as the control
mode thread, in which another loop is running. This is illustrated in the haptics-brain box
in Figure 4.9.

The loop that is implemented in the run function listed in Figure 4.10 is responsible for
generating and transmitting commands to the drone-controller component in the frequency
feontror that is set in Section 4.1.1. In the run function that the base class provides to any
inheriting sub classes (does not need to be re-implemented for each control mode), each
iteration of the loop the button switch logic is applied which may or may not influence
further decision making or trigger a command to be sent immediately. Also executed in
each iteration is the tick function that is implemented by each control mode subclass
itself. Implementations of the tick function take the inputs of the haptic device such as
the position and/or rotation of the haptic tool from shared memory, which is filled by the
calculateHapticFeedback function that runs in the haptics thread, and using them as
inputs to firstly decide if a command is to be sent (e.g. if the inputs changed) and secondly
to calculate the values of the command that is sent each iteration — or in terms of the

42

Target Positioning and Terrain-Aware Target Positioning control modes, no command is to
be generated and other housekeeping can be done in the function. For the direct control
modes, namely Manual Flight and Velocity Joystick, the values are more or less calculated
by applying the inputs to the mathematical functions ds, with z € {MF, VJ} defined earlier,
just that they are implemented in C++ and some corrections are also applied. At the end
of the loop iteration, the thread is set to sleep for

1 1 _
T = = = 0.016
contro! j;onirol 60 Hz ®

so that the frequency is met approximately (approximation is enough for such a relatively
low frequency).

Manual Flight

1 table SetAnglesThrottleCommand {
2 pitch:float;

3 roll:float;

4 yaw:float;

5 duration:float;

6 throttle:float = 0.0;

7}

The Manual Flight control mode implementation continuously sends messages containing
a SetAnglesThrottleCommand command to the drone-controller. Appendix A.4 provides
UML class diagrams showing the interfaces of all the control mode implementations, and
the used command is modeled by the table schema above.

In order to fill the angle and throttle values, the function dsyp that was introduced in
Section 4.3.1 is implemented in C++4, taking the inputs from shared memory that were
obtained by the calculateHapticFeedback implementation.

For this control mode, the f fyr function is used to calculate the force vector to apply to the
haptic device needed by the implementation of the calculateHapticFeedback function.

Velocity Joystick

1 table MoveVelocityCommand {
2 velocity:Vec3;

3 duration:float;

4 yaw:float = 0.0;

5 }

Similar to the Manual Flight control mode implementation, the implementation of the
Velocity Joystick control mode sends messages continuously containing a command in the
form of a FlatBuffers buffer called MoveVelocityCommand modeled by the table schema
before.

To calculate the values of the command, the dsyj function from Section 4.3.1 is used in the
same way as before, just that the output is a velocity vector now.

43

Function f fy; is used to calculate the force vector, manually applying it in the implemen-
tation of calculateHapticFeedback that the control mode provides.

Target Positioning

1 table MovePositionCommand {
2 position:Vec3;

3 velocity:float;

4 yaw:float = 0.0;

5 }

In the implementation of the Target Positioning control mode, a listener for a short button
press is used to send a MovePositionCommand command within a message to the drone-
controller, which is modeled by a table with the schema above.

Positional values and the yaw goal is calculated by the dstp function defined in Section 4.3.1,
with the values from the calculateHapticFeedback implementation being input.

ffrp is the force feedback function that tells the force vector to be applied to the haptic
device in the calculateHapticFeedback implementation.

Terrain-Aware Target Positioning

The Terrain-Aware Target Positioning control mode works the same as the Target Position-
ing control mode (using the same desired state function and button press implementation),
but is special in the way that it additionally receives sensor data in form of a point cloud
scanned frequently by a LIDAR sensor from the drone-controller-airsim component.

1 table PointcloudSensorData {
2 points:[Vec3];

3 organized:bool = true;

4 height:uint = 0;

5 width:uint = 0;

6)

Receiving the sensor data is done in yet another thread referred to as the sensor thread that
is started by initializing the PointcloudSensor class on the haptics-brain component. It
runs a loop that waits for a message containing a PointcloudSensorData payload modeled
by the table schema above, which contains the points of the point cloud, and constructs the
point cloud in CHAI3D representation on each iteration. See Figure 4.9 for an overview
about the various threads introduced by now.

The PointcloudSensor object is passed to the instance of the Terrain-Aware Target Posi-
tioning control mode, and can be used to fetch the point cloud in CHAI3D representation
that is constructed in specific intervals in the sensor thread.

If triangulation is enabled in the configuration that can be found in the header of the
PointcloudSensor class, the sensor thread also constructs a triangle mesh by using an
algorithm that is provided by PCL. Available algorithms that proved themselves to construct
triangle meshes from the point clouds quite well and fast enough are the 'Greedy Projection’
algorithm presented by [50] and the 'Organized Fast Mesh’ algorithm introduced by [51].

44

The latter only works on organized point clouds as the name implies, which means that
the point clouds have a width and a height and their points are stored two-dimensionally
(e.g. you can obtain a depth value for a specific discrete value on the x and y axes). For
the specific LIDAR and point cloud implementation used in this thesis, the point cloud is
organized, but that may not be the case for other combinations of drones and sensors.

In contrast to the other control modes that apply a force vector explicitly in a manual way,
the Terrain-Aware Target Positioning control mode uses the cWorld abstraction of CHAI3D
to render the received point cloud (or the generated mesh) haptically. For that, the point
cloud provided by the PointcloudSensor class is added to the cWorld object, after which
interaction forces are calculated and sent to the haptic device, similar to how it’s done in
the second pseudocode in Appendix A.4.

4.4.3 Component drone-controller-airsim

The drone-controller-airsim component is the drone-controller implementation for usage
with AirSim to simulate the drone. It connects to AirSim’s RPC interface and enables
remote control of the drone. After that, it runs an endless loop that waits for messages to be
received in each iteration. Once a message is received, the contained commands are parsed
and several corrections and transformations are applied to the values. For example the
axes are switched so that the drone flies in the intended direction, and vectors are mapped
to the coordinate system used in AirSim, as conceptualized in Section 4.3.1. Then, the
corresponding remote function of the RPC interface is called that leads to the command’s
desired effect, as can be seen in Figure 4.9. So basically it translates the command into
something that is understood by AirSim — or in case of another potential drone-controller
implementation, the hardware drone.

If the Terrain- Aware Target Positioning control mode is active, the component is also respon-
sible for reading the LIDAR sensor and sending the resulting point cloud to the haptics-brain
component in a specific interval. The LIDAR sensor is implemented by the LidarSensor
class that is based on the same super classes used in the haptics-brain implementation. A
new thread is spawned to do that, similarly to how it’s done on the haptics-brain compo-
nent.

CHAPTER 5

Evaluation

In this chapter, the demonstrator will be evaluated. Experiments will be done to show
that the implementation meets the requirements such as maximum latencies and minimum
frequencies in Section 5.1.1 and Section 5.1.2. Section 5.1.3 evaluates how well the com-
pression performs and answers the question if the applied compression algorithm is suitable
for the application. Also, tests are done to find out how well the implemented control
modes perform and to give suggestions on what control mode to use in which situation
in Section 5.1.4. Last but not least, Section 5.2 analyzes what data rate is required from
the underlying communication channel and which overhead is introduced by the various
protocols and formats used in the implementation.

All evaluations will be done on a single PC which eliminates additional overhead by network
components between the software components and allows for comparability. Table 5.1 shows
which hardware and software the system consists of as well as some information about how
the software components of the demonstrator are compiled for evaluation. A different
compiler is used for the drone-controller-airsim component due to an incompatibility of the
AirSim library with the newer MSVC v142 compiler. For time measurements, the Windows
API function GetSystemTimePreciseAsFileTime for high precision time measurements is
used which is advertised to retrieve the system date and time with the highest possible
precision that is said to be less than 1ps [52].

5.1 Experiments

Due to the two threads of the haptics-brain component that run on different frequencies
but exchange data in shared memory with each other, it is not trivial to simply measure a
RTT and be done with it. Also, as figured out in Section 4.1.2, there is no RTT at all due
to the unidirectionality of communication. That’s why two different latencies are measured:
the latency that is introduced by the control mode in Section 5.1.1 and the latency that is
introduced by communication with the haptic device and calculation of the force feedback
in the haptics thread in Section 5.1.2. Figure 5.1 shows the directed latency paths for which
measurements are taken in the following subsections.

46

haptics-brain drone-controller-airsim

MSVC v142 (VS 2019) MSVC v141 (VS 2017)
Flags: /std:c++14 /02 /0b2 /fp:precise

CPU: AMD® Ryzen™ 7 2700X

GPU: NVIDIA® GeForce RTX 3080 Founders Edition
RAM: 2x8GB DDR4-3000 CL15-17-17-35 (Dual Channel)
Operating System Microsoft® Windows 10 Professional (SDK 10.0.19041.0)

Compiler

Hardware Compo-
nents

Table 5.1: Characteristics of the PC system used for evaluation.

: : haptics-brain drone-controller-airsim : :
— ﬁ 1
: % : Control Mode +| Control Mode ' AirSim !
hes S Thread ~ Thread <t Alreim,
' | X . | RPC
: Haptic | - ! Y 1Interface 1
1 Device :(_| ”| Haptics Thread : :
1
lm e ==} LT !

Figure 5.1: Diagram showing different latency paths that work independently but contribute to
overall latency.

5.1.1 Control Mode Latency

To build confidence that the latency introduced by the computations and communication of
the control mode implementations in both haptics-brain and drone-controller-airsim meet
the requirement for the control latency defined in Section 4.1.2, an experiment is done. Also,
the computational overhead that comes with the implemented FWT-based compression is
of interest.

Measurements of the latencies will be taken for the control modes that continuously send
movement commands, namely the Manual Flight control mode and the Velocity Joystick
control mode, once with no compression and once with FWT-based compression enabled.
Remember that the other control modes do not have a strict control mode latency require-
ment as explained in Section 4.3.1. That’s why only the first two modes are evaluated.

Please consider having a look at the source code! to get a better understanding of where
the measurements are taken exactly. They are calculated by the difference of an absolute
timestamp taken at the beginning of command construction on the haptics-brain component
and another one after the last RPC call finished on the drone-controller-airsim component:

Z‘Elatency = tend — tbegin

To characterize the results of the experiment mathematically, assuming that the latency
is Student’s t-distributed, the expected value Z, the standard deviation s, as well as the
confidence intervals (Cls) for the expected value and for the standard deviation (CIs,,) will
be calculated for each sample.

"https://code.ovgu.de/comsys-group/haptic-drone-control

https://code.ovgu.de/comsys-group/haptic-drone-control

47

700 A
¢
¢
600 - [4
E_ 500 - 4i_
>
o
C
9]
© 400 1
300 A _
200 - ; .
Manual Flight Velocity Joystick

control mode

Figure 5.2: Box plots showing n = 10000 measurements of the control mode latency for each direct
control mode, compression disabled.

Control Mode Compr. z [ps] Sn, [1s] ClIs, [ps,ps]
Manual Flight none 349.43316 + 0.74436 37.97341 [37.45436, 38.50715]
Velocity Joystick 328.63979 + 1.01282 51.66916 [50.96291, 52.39541]
Manual Flight FWT 23411.15497 + 2.48753 126.90198 [125.16739, 128.68567]
Velocity Joystick 23295.59470 + 5.56958 284.13300 [280.24925, 288.12667]

Table 5.2: Characteristics of control mode latencies for each direct control mode, no compression
versus FWT compression (Symlet sym2, J = 1). Calculations are based on n = 10000
measurements respectively and using a confidence level of 1 — a = 0.95.

Evaluation

Figure 5.2 shows box plots of n = 10000 latency measurements for each of the direct
control modes without utilizing any means of compression. To outline the performance
impact of FWT-based compression, Figure 5.3 visualizes the same measurements but with
compression enabled (Symlet sym2 and J = 1). In Table 5.2 you can see the corresponding
expected values, standard deviations and confidence intervals.

All measurements of the control mode latency, regardless of compression, lie far below
the maximum T}, ~ % = 200 ms that is specified in Section 4.1.2, and leave lots of
room for additional latencies that would be introduced in the real world, such as hardware
components and network transmission times. The low latencies also easily allow the control
frequency feontrot = 60 Hz specified in Section 4.1.1 to be satisfied. FWT-based compression
adds computational overhead in the form of latency in order of magnitude of two, as can
be expected.

48

Manual |
Flight L X, X4 “e ¢

control mode

Velocity |
Joystick ¢ oo

21000 21500 22000 22500 23000 23500 24000 24500
latency [ps]

Figure 5.3: Box plots showing n = 10000 measurements of the control mode latency for each direct
control mode, FWT-based compression enabled (Symlet sym2 and J = 1).

5.1.2 Haptics Latency

Another requirement of the thesis implementation is that it’s able to keep up with the
haptics frequency fpaptics defined in Section 4.1.3. If the execution time is lower or equal
than the inter-arrival time

11
fhaptics 1000 Hz

Thaptics = = 0.001s = 1000 ns

of the haptics frequency, the implementation is able to keep up with the update rate of
the haptic device. To find out, an experiment will be done in which measurements of the
execution time of the calculateHapticFeedback implementation will be taken for each
control mode. For the Terrain-Aware Target Positioning control mode, different AirSim
settings regarding the LIDAR sensor are tested, too.

Once again, please consider having a look at the source code? to get a better understanding
of where the measurements are taken exactly. They are calculated by the difference of abso-
lute timestamps taken before and after the calculateHapticFeedback function call in the
implementation of the Haptics class, which can be found in the haptics-brain component:

tlatency = tend — tbegin

To characterize the results of the experiment mathematically, assuming that the latency is
Student’s t-distributed, the expected value z, the standard deviation s, as well as the CI
for the expected value will be calculated for each sample.

2https://code.ovgu.de/comsys-group/haptic-drone-control

https://code.ovgu.de/comsys-group/haptic-drone-control

49

Manual |
Flight ¢ ¢ ¢ " ¢

[}
©
g
5 Velocity | " (XXX, | (24 (X L 2
£ Joystick
c
8

Jarget g g * 3 *

Positioning
CI) S(I)O 10I00 15I00 20I00 25I00

latency [ps]

Figure 5.4: Box plots showing n = 10000 measurements of the haptics latency for each simple control

mode.
Control Mode AirSim settings z [ps] Sn, [1s]
Manual Flight - 1000.31664 £ 1.87361 95.58244
Velocity Joystick - 1000.67837 £+ 1.92127 98.01396
Target Positioning - 1000.40290 & 1.95436 99.70208
Terrain-Aware 90hfov-90vfov-50ch-10rot 1000.68321 4+ 1.76047 89.81078

Target Positioning 90hfov-90vfov-100ch-12rot 1001.87894 + 2.46986 126.00042
180hfov-180vfov-50ch-10rot 1000.09301 4+ 1.39386 71.10812
180hfov-180vfov-100ch-12rot 1001.46263 + 2.34997 119.88388
360hfov-180vfov-50ch-10rot ~ 1000.88498 + 1.84505 94.12552
360hfov-180vfov-100ch-12rot 1002.89444 + 2.77944 141.79367

Table 5.3: Characteristics of haptics latencies for different control modes and AirSim sensor settings.
Calculations are based on n = 10000 measurements respectively and using a confidence
level of 1 — a = 0.95.

Evaluation

Figure 5.4 shows box plots that visualize the n = 10000 measurements of the haptics latency
for the simple control modes, more specifically the Manual Flight, Velocity Joystick and
Target Positioning control modes. The measurements taken specifically for the Terrain-
Aware Target Positioning control mode and for the different AirSim LIDAR configurations
are depicted in Figure 5.5. Numbers that characterize the sample set further are available
in Table 5.3.

The expected values basically show the average sum of the execution time of the haptic
calculations of the own implementation and the time waited until the next update cycle of

50

90hfov

90vfov | PN
50ch ¢

10rot

"e

90hfov

90vfov |
vl BRI I " e

12rot

¢ 4 ¢

H

180hfov
180vfov |
50ch ¢ ¢
10rot

(X4

180hfov

180vfov |
100¢ch (L X} ¢ ¢ ¢ »

12rot

AR 224 L

AirSim settings

360hfov
180vfov |
50¢ch [X ¢ ¢
10rot

360hfov
180vfov |

100ch ¢ Md

12rot

HH

10?2 103
latency [ps]

Figure 5.5: Box plots showing n = 10000 measurements of haptics latency for Terrain-Aware Target
Positioning control mode, for different AirSim sensor settings.

51

the haptic device. As can be seen, the synchronization between the haptic device and the
haptics driver does not seem to be perfect, because there are lots of outliers. It seems that
the haptics frequency of frqptics = 1000 Hz cannot be achieved reliably. There are outliers
that indicates the haptics latency momentarily triples (the haptics frequency getting to as
low as a third of the desired frequency). However, the bulk of the latencies are very close
to the desired haptics latency Thaptics = 1000 ps and the user experience does not degrade
noticeable.

5.1.3 Compression Error

Also of interest is the answer to the question if the implemented FWT-based compression
performs well enough to not degrade the operator’s experience and control performance too
much, or in other words, is applicable to the problem proposed in the thesis. In order to
get that answer, an experiment will be done.

The values used in positions and vectors that are calculated by the control mode imple-
mentation of the haptics-brain component are collected before compression. Also, the
corresponding values that were decompressed by the drone-controller component that are
expected to differ from the original values are taken. This is done for different FWT config-
urations, of which the parameters are explained in Section 4.4.1. Then, the Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) will be calculated to assess the occur-
ring errors.

Evaluation

Table 5.4 shows the calculated errors of a sample size of n = 10000 for each control mode
and FWT configuration. Symlet sym2 with J = 1 produces lower errors than the haar
symlet with J = 1 for every test case. Also, the errors are low enough so that the FWT-
based compression is definitely applicable to the kinesthetic data that is communicated by
the thesis implementation, which complements the conclusion of [19] that an FWT-based
compression approach is feasible.

Figure 5.6 shows an exemplary cutout from a time series of pitch values, with the original
uncompressed values from the haptics-brain component being on the blue continuous line,
and the values that were decompressed on the drone-controller component laying on the
orange dashed line. Below the time series, the corresponding absolute error is plotted. As
can be seen, the graphs barely defer from each other as the error is so low. Such errors
will not degrade the performance of the operator too much as it will be barely noticeable,
and are low enough so that they can be corrected in time by the operator. What comes to
attention is that the absolute error is high when the gradient of the pitch changes drastically,
e.g. when the sign changes spontaneously.

92

0.2
compression

0.04 — none
= = sym2jl

_0.2 .

—0.4 1

pitch [rad]

—0.6

_08 4

0.025 A

0.020 +

o
o
et
w
)

0.010 A

absolute error

0.005 A

0.000 A

0 100 200 300 400 500
time [0.1 s]

Figure 5.6: Line plot showing arbitrary time series with original and decompressed value, below
another line plot showing the absolute error for the corresponding time.

53

Control Mode FWT config. Comp. MAE RMSE
Manual Flight haar, J =1 yaw 0.0139381043 0.2401707213
pitch 0.0024922066 0.0227183118
roll 0.0054820715 0.0258818107
throttle 0.0005103184 0.0028538869
sym2, J =1 yaw 0.0039076283 0.0186814441
pitch 0.0010339226 0.0043668837
roll 0.0022474502 0.0054244648
throttle 0.0004804751 0.0022642765
Velocity Joystick haar, J =1 yaw 0.1074342914 0.3083017231
Vg 0.0101691560 0.0423465858
vy 0.0097758820 0.0318927135
U, 0.0135755688 0.0426435064
sym2, J =1 yaw 0.0504304648 0.1594825163
Vg 0.0038642132 0.0087465089
Uy 0.0031162306 0.0078186653
vy 0.0044419764 0.0146812443

Table 5.4: Compression errors for different control modes and FWT configurations. Calculations are
based on n = 10000 measurements respectively.

5.1.4 User Experience of Control Modes

The control modes allow operating the drone in fairly different ways and thus each control
mode may be predestined for different applications. An experiment will be done to subjec-
tively evaluate the control modes and to find out which control mode is best for a given
scenario.

One person, more specifically the author of the thesis, gets into the role of the operator and
operates the drone so that it flies around a cuboid in a virtual world, once in each control
mode. After that, the person gives feedback to the user experience by rating certain aspects
of the control mode on a scale from one to ten. The aspects are:

o the overall difficulty,

o the maneuverability meaning how quickly the drone can be turned and how fast the
drone reacts to changing inputs,

e the decision time the control mode allows between movements,
o the subjective quality of haptic feedback and

o the precision the operator can achieve.

For example, the latter can be important when operating in an environment that does not
allow for a lot of error, where diverging from a specific flight path can be dangerous to the
drone’s integrity or not be possible at all — imagine tight air ducts or collapsed buildings.

o4

Manual Flight Velocity Joystick Target Positioning

Difficulty 10/10 3/10 1/10
Maneuverability 10/10 5/10 2/10
Decision Time 1/10 5/10 10/10
Quality of Haptic Feedback 1/10 3/10 1(7)/10
Precision 1/10 5/10 10/10

Table 5.5: Subjective user experience of control modes with ratings from one to ten based on various
aspects. Ratings done by thesis author.

Evaluation

The Manual Flight control mode is by far the most difficult, as can be seen in Table 5.5,
as the axes of the aircraft need to be controlled by the operator itself and thrust needs
to be regulated manually. However, it gives the maximum freedom of movement and can
be used to achieve hectic and visually impressive flight paths. It is very responsive and
allows to fly sophisticated curves continuously. That’s why this control mode is predestined
for competitive drone races and camera flights that require fast movements, e.g. in the
entertainment sector.

While not the easiest in general, the Velocity Joystick control mode is the easiest of the
more direct control modes. The operator just needs to push the haptic tool in the direction
the drone shall fly to, and the drone does it. Due to the fact that the drone will hover
safely while not giving any input, it gives endless decision time optionally, but while flying
the operator needs to decide quickly. Other than the Manual Flight control mode, it gives
minimal relevant haptic feedback representing the speed the drone is destined to fly. This
control mode is the ’jack of all trades’ — it combines ease of operation, continuous movement
and haptic feedback. It is suggested for every scenario on which the other control modes
are not applicable.

For scenarios that require very precise and thoughtful movements, and where time is not the
greatest concern, for example for rescue operations in collapsed buildings or reconnaissance
in indoor environments, the Target Positioning control mode is perfect. This mode makes
continuous movements very hard to do, which results in a fairly slow pace — the drone gets
to its destination safely but slowly. It is not realistically feasible for situations where the
flight controller of the drone is not able to hold the drone in position safely, for example
in bad weather conditions. Without the addition of some kind of three-dimensional data
source, there is no haptic feedback at all. If a LIDAR sensor or stereoscopic vision can be
utilized, the Terrain-Aware Target Positioning control mode provides haptic feedback in the
form of a haptical presentation of the surrounding environment which, depending on the
resolution and quality of the sensor or stereoscopic image, aids in judgement of distances
and finding the right target position.

95

100 A

80
4 B |Pv4 Header
é‘ [UPD Header
g 07 mm CoAP Header
n FlatBuffers
E B Overhead
¥ N Control Data
o

40

20 A

Target Positioning Velocity Joystick Manual Flight

Figure 5.7: Bar plot showing the Internet Protocol Version 4 (IPv4) packet sizes for single messages
containing one command that are sent continuously by the corresponding control mode.
The stacks visualize the parts the packet consists of and what portion said parts take from
the total size of the packet. For the Target Positioning and Terrain-Aware Target Posi-
tioning control mode, the size of the message that contains one MovePositionCommand
is shown instead, as there are no continuous messages to be sent by default.

o6

5.2 Data Rate and Overhead

The communication between haptics-brain and drone-controller-airsim should at least be
able to run on WLANSs and even better on WWANS as mentioned in Section 4.1.4. CoAP
is mainly to be used over IP, and packets can be captured easily with tools like Wireshark.
Figure 5.7 shows the sizes and compositions of IPv4 packets that contain a message with
a single control command generated by the corresponding control mode implementation,
which were read from Wireshark captures. Also, the messages that are sent continuously
by the implementations of the direct control modes, namely the Manual Flight and Velocity
Joystick control mode, are fixed in size due to their static structure defined in the FlatBuffers
schema files. With the size of a single UDP packet containing a CoAP message containing
a control command, named [, in the following, and the frequency feontroi that is defined
in Section 4.1.1, the data rate for the direct control modes dr, with x € {MF,VJ} can be
calculated trivially. Once again, due to the infrequency of control commands and because
latency is not a huge concern, the calculations for the Target Positioning and Terrain-Aware
Target Positioning control modes are left out.

drx = fcont’rol * l:L‘ [B S_l]
dryr = 60Hz % (20B + 8B + 5B + 56 B +20B) = 6.54kBs™!
dryy =60Hz % (20B+8B + 5B+ 52B +20B) = 6.30kBs™*

After calculating the data rates for each control mode like above, it turns out that the thesis
implementation should be able to communicate over all technologies that were mentioned
earlier, given that IPv4 is used. This conclusion is to be taken with a grain of salt though,
since only the theoretical maximum data rates are considered and the data rates of those
technologies may be much lower than the maximum in real world environments. Also
latencies that are practically introduced by the technologies are not taken into account
either, which may or may not lower the user experience and operator’s performance to an
unacceptable level too, regardless of the bandwidth being sufficient or not.

Please note that the Terrain- Aware Target Positioning control mode causes additional traffic
due to exchanging point cloud data frequently (with a size depending on the number of
scanned points), but due to the fact that the operator can just wait for the transmission
being done, the required data rate does not need to be satisfied — the transmission just needs
longer and introduces additional latency. Thus, any further more complex calculations for
the Terrain-Aware Target Positioning control mode are avoided at this point. Also, generally
the calculations are only done for the communication that consumes the most bandwidth,
which are the commands that are continuously sent. Those are transmitted as a CoAP
NON message, which does not trigger any acknowledgements to be sent. However, for
certain actions such as starting and stopping the drone via pressing the buttons on the
haptic device, a CON message is sent which also adds traffic due to the ACK message and
potential retransmissions.

CHAPTER 6

Conclusion

This chapter summarizes what was achieved and if the requirements set in Section 4.1
are met by the thesis implementation. Ending the thesis, Section 6.2 gives an outlook on
potential future work on the thesis implementation.

6.1 Summary

The thesis results in a software implementation that achieves the goal of implementing
a demonstrator that explores new ways of controlling a quadrotor drone with a six DoF
haptic device and that provides a platform for further research on drone control and haptic
communication.

All requirements that are set in Section 4.1 are met sufficiently by the implementation, and
the calculated data rates in Section 5.2 suggest that communication between the components
can be established stably by nearly all common WLAN and WWAN technologies, as long
as the network is not congested or otherwise restricted by environmental factors.

The implemented control modes work subjectively good enough, however each of them is
suitable for different applications. Also, it has been shown that the FWT-based compression
proposed by [19] is applicable to the data model of the implementation.

6.2 Future Work

There are a lot of directions further work on the thesis implementation could take. The
most obvious one is to re-evaluate the demonstrator with a real hardware quadrotor drone,
which would require to implement a new drone-controller component and a way to provide
visual feedback, e.g. by transmitting and displaying a camera feed to the operator.

One problem definitely is that the user experience of the control modes evaluated in Sec-
tion 5.1.4 is highly subjective and only considers the feedback of the thesis author. A proper
case study with lots of participants would help to get a better understanding of the quality
of the control modes.

Also, it would be interesting to do further evaluations on WMHNs, for example on the

o8

OVGU-HC testbed once a sufficient number of nodes has been added. The effect of lots of
hops between the haptics-brain and drone-controller component could be analyzed and may
show if the implementation can be used over the internet without too much performance
degradation, enabling very long range teleoperation.

While the Terrain-Aware Target Positioning control mode provides somewhat helpful haptic
feedback, the modeling of the drone’s environment by obtaining a point cloud with a LIDAR
sensor could be improved. For example adding some kind of aggregating world construction
that continuously adds LIDAR scans from different positions to a model of the world would
enable a more complete and wider haptic rendering. Another follow-up idea would then be
to add path finding capabilities — if you already have a solid long-range representation of
the drone’s environment, you might as well add path finding to it.

Last but not least, the demonstrator is open for research on other disciplines. The demon-
strator can be used to work on artificial intelligence (e.g. neural networks, reinforcement
learning) that could assist a human operator to control the drone, or even operate the drone
autonomously.

Bibliography

Stefan Lichiardopol. A survey on teleoperation. 2007.

M. Hassanalian and A. Abdelkefi. Classifications, applications, and design challenges
of drones: A review. Progress in Aerospace Sciences, 91:99-131, 2017.

Jianguo Zhou, Jintao Yang, and Lu Lu. Research on multi-uav networks in disaster
emergency communication. IOP Conference Series: Materials Science and Engineer-
ing, 719:012054, 01 2020.

IHS. Internet of things (IoT) connected devices installed base worldwide from 2015
to 2025 (in billions). https://www.statista.com/statistics/471264/iot-number-
of-connected-devices-worldwide/, 2016. Accessed June 14, 2019.

Frank Engelhardt, Johannes Behrens, and Mesut Giines. The ovgu haptic commu-
nication testbed (ovgu-hc). In 2020 IEEE 31st Annual International Symposium on
Personal, Indoor and Mobile Radio Communications, pages 1-6, 2020.

Thomas Sheridan, W. Verplank, and T. Brooks. Human and computer control of
undersea teleoperators. 12 1978.

S. D. Laycock and A. M. Day. Recent developments and applications of haptic devices.
Computer Graphics Forum, 22(2):117-132, 2003.

3D Systems Touch™ Haptic Device User Guide. https://de.3dsystems.com/sites/
default/files/2017-12/3DSystems-Touch-UserGuide.pdf, 2017. Accessed April 1,
2022.

Zach Shelby, Klaus Hartke, and Carsten Bormann. The Constrained Application Pro-
tocol (CoAP). RFC 7252, June 2014.

Vasil Sarafov and Jan Seeger. Comparison of iot data protocol overhead. 2018.

Borting Chen, Mesut Giines, and Yu-Lun Huang. Coap option for capability-based
access control for iot-applications. In IoTBD, 2016.

Marcin Odelga, Paolo Stegagno, Nicholas Kochanek, and Heinrich H. Biilthoff. A
self-contained teleoperated quadrotor: Omn-board state-estimation and indoor obsta-

cle avoidance. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 7840-7847, 2018.

Maik Riestock, Frank Engelhardt, Sebastian Zug, and Nico Hochgeschwender. User
study on remotely controlled uavs with focus on interfaces and data link quality. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://de.3dsystems.com/sites/default/files/2017-12/3DSystems-Touch-UserGuide.pdf
https://de.3dsystems.com/sites/default/files/2017-12/3DSystems-Touch-UserGuide.pdf

60

[21]

[22]

23]

pages 3394-3400, 2017.

Vemema Kangunde, Rodrigo S Jamisola, and Emmanuel K Theophilus. A review
on drones controlled in real-time. International journal of dynamics and control,
9(4):1832-1846, 2021.

Jeroen G.W. Wildenbeest, David A. Abbink, Cock J.M. Heemskerk, Frans C.T. van der
Helm, and Henri Boessenkool. The impact of haptic feedback quality on the perfor-

mance of teleoperated assembly tasks. IEEE Transactions on Haptics, 6(2):242-252,
2013.

Konstantinos Antonakoglou, Xiao Xu, Eckehard Steinbach, Toktam Mahmoodi, and
Mischa Dohler. Toward haptic communications over the 5g tactile internet. IEEE
Communications Surveys Tutorials, 20(4):3034-3059, 2018.

P. Hinterseer, E. Steinbach, and S. Chaudhuri. Perception-based compression of haptic
data streams using kalman filters. In 2006 IEEFE International Conference on Acoustics
Speech and Signal Processing Proceedings, volume 5, pages V-V, 2006.

Peter Hinterseer, Sandra Hirche, Subhasis Chaudhuri, Eckehard Steinbach, and Martin
Buss. Perception-based data reduction and transmission of haptic data in telepresence
and teleaction systems. IEEE Transactions on Signal Processing, 56(2):588-597, 2008.

Frank Engelhardt, Sophie Herbrechtsmeyer, and Mesut Giines. Kinesthetic coding
based on the fast wavelet transform for remote-controlling a quadrotor drone. In 2022
IEEE 19th Annual Consumer Communications Networking Conference (CCNC), pages
157-162, 2022.

Eckehard Steinbach, Matti Strese, Mohamad Eid, Xun Liu, Amit Bhardwaj, Qian Liu,
Mohammad Al-Ja’afreh, Toktam Mahmoodi, Rania Hassen, Abdulmotaleb El Saddik,
and Oliver Holland. Haptic codecs for the tactile internet. Proceedings of the IEEE,
107(2):447-470, 2019.

T. Mung Lam, Max Mulder, and M. M. van Paassen. Haptic feedback for uav tele-
operation - force offset and spring load modification. In 2006 IEEFE International
Conference on Systems, Man and Cybernetics, volume 2, pages 1618-1623, 2006.

Carine Rognon, Margaret Koehler, Christian Duriez, Dario Floreano, and Allison M.
Okamura. Soft haptic device to render the sensation of flying like a drone. IEEE
Robotics and Automation Letters, 4(3):2524-2531, 2019.

Roman Ibrahimov, Evgeny Tsykunov, Vladimir Shirokun, Andrey Somov, and Dzmitry
Tsetserukou. Dronepick: Object picking and delivery teleoperation with the drone
controlled by a wearable tactile display. In 2019 28th IEEE International Conference
on Robot and Human Interactive Communication (RO-MAN), pages 1-6, 2019.

Matteo Macchini, Thomas Havy, Antoine Weber, Fabrizio Schiano, and Dario Flore-
ano. Hand-worn haptic interface for drone teleoperation. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 10212-10218, 2020.

Vivek Ramachandran, Matteo Macchini, and Dario Floreano. Arm-wrist haptic sleeve
for drone teleoperation. IEEE Robotics and Automation Letters, pages 1-1, 2021.

Jessie Y. C. Chen and Jennifer E. Thropp. Review of low frame rate effects on human
performance. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems

61

and Humans, 37(6):1063-1076, 2007.

Y. Kuroki, T. Nishi, S. Kobayashi, H. Oyaizu, and S. Yoshimura. A psychophysical
study of improvements in motion-image quality by using high frame rates. Journal of
the Society for Information Display, 15(1):61-68, 2007.

Are There Advantages to Frame Rates Higher Than the Refresh Rate?
https://blurbusters.com/fag/benefits-of-frame-rate-above-refresh-rate/,
August 2017. Accessed February 9, 2022.

P. Hinterseer and E. Steinbach. A psychophysically motivated compression approach for
3d haptic data. In 2006 14th Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems, pages 35-41, 2006.

N. Fourty, T. Val, P. Fraisse, and J.-J. Mercier. Comparative analysis of new high data
rate wireless communication technologies "from wi-fi to wimax". In Joint International
Conference on Autonomic and Autonomous Systems and International Conference on
Networking and Services - (icas-isns’05), pages 66-66, 2005.

Godfrey Anuga Akpakwu, Bruno J. Silva, Gerhard P. Hancke, and Adnan M. Abu-
Mahfouz. A survey on 5g networks for the internet of things: Communication tech-
nologies and challenges. IEEE Access, 6:3619-3647, 2018.

Arun Agarwal. Evolution of mobile communication technology towards 5g networks
and challenges. 07 2019.

Mobile Base Stations. https://mobilenetworkguide.com.au/mobile_base_
stations.html. Accessed May 4, 2022.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity
visual and physical simulation for autonomous vehicles. In Field and Service Robotics,
2017.

N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source
multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CHS37566), volume 3, pages 21492154
vol.3, 2004.

E. Rohmer, S. P. N. Singh, and M. Freese. Coppeliasim (formerly v-rep): a versatile
and scalable robot simulation framework. In Proc. of The International Conference on
Intelligent Robots and Systems (IROS), 2013. www.coppeliarobotics.com.

Conti, F. and Barbagli, F. and Balaniuk, R. and Halg, M. and Lu, C. and Morris, D.
and Sentis, L. and Warren, J. and Khatib, and Salisbury, K. The chai libraries. In
Proceedings of Eurohaptics 2003, pages 496-500, Dublin, Ireland, 2003.

Diego C Ruspini, Krasimir Kolarov, and Oussama Khatib. The haptic display of
complex graphical environments. In Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, pages 345-352, 1997.

Flatbuffers: C++ Benchmarks. https://google.github.io/flatbuffers/
flatbuffers_benchmarks.html. Accessed April 1, 2022.

Flight Controller (Autopilot) Hardware. https://docs.px4.io/v1.12/en/flight_
controller/, March 2021. Accessed April 1, 2022.

https://blurbusters.com/faq/benefits-of-frame-rate-above-refresh-rate/
https://mobilenetworkguide.com.au/mobile_base_stations.html
https://mobilenetworkguide.com.au/mobile_base_stations.html
https://google.github.io/flatbuffers/flatbuffers_benchmarks.html
https://google.github.io/flatbuffers/flatbuffers_benchmarks.html
https://docs.px4.io/v1.12/en/flight_controller/
https://docs.px4.io/v1.12/en/flight_controller/

62

Appendix

[41]
[42]

[43]

[52]

FlatBuffers: FlatBuffers. https://google.github.io/flatbuffers/. Accessed April
1, 2022.

FlatBuffers: ~ Writing a schema. https://google.github.io/flatbuffers/
flatbuffers_guide_writing_schema.html. Accessed April 24, 2022.

FlatBuffers: Using the schema compiler. https://google.github.io/flatbuffers/
flatbuffers_guide_using_schema_compiler.html. Accessed April 24, 2022.

libcoap.net. https://libcoap.net/, 2021. Accessed April 24, 2022.

Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In
IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China,
May 9-13 2011.

rafat /wavelib: C Implementation of 1D and 2D Wavelet Transforms (DWT,SWT and
MODWT) along with 1D Wavelet packet Transform and 1D Continuous Wavelet Trans-
form. https://github.com/rafat/wavelib, August 2020. Accessed April 24, 2022.

MAVLink Messaging. https://docs.px4.io/v1.12/en/middleware/mavlink.html,
March 2020. Accessed April 19, 2022.

AirLib on a Real Drone. https://microsoft.github.io/AirSim/custom_drone/,
2021. Accessed April 19, 2022.

Determining yaw, pitch, and roll from a rotation matrix. http://planning.cs.uiuc.
edu/node103.html, April 2012. Accessed May 6, 2022.

Zoltan Csaba Marton, Radu Bogdan Rusu, and Michael Beetz. On fast surface re-
construction methods for large and noisy point clouds. In 2009 IEEE International
Conference on Robotics and Automation, pages 3218-3223, 2009.

Dirk Holz and Sven Behnke. Fast range image segmentation and smoothing using
approximate surface reconstruction and region growing. In Sukhan Lee, Hyungsuck
Cho, Kwang-Joon Yoon, and Jangmyung Lee, editors, Intelligent Autonomous Systems
12, pages 61-73, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

GetSystemTimePreciseAsFileTime function (sysinfoapi.h) - Win32 apps | Microsoft
Docs. https://docs.microsoft.com/de-de/windows/win32/api/sysinfoapi/nf-
sysinfoapi-getsystemtimepreciseasfiletime, October 2021. Accessed April 21,
2022.

https://google.github.io/flatbuffers/
https://google.github.io/flatbuffers/flatbuffers_guide_writing_schema.html
https://google.github.io/flatbuffers/flatbuffers_guide_writing_schema.html
https://google.github.io/flatbuffers/flatbuffers_guide_using_schema_compiler.html
https://google.github.io/flatbuffers/flatbuffers_guide_using_schema_compiler.html
https://libcoap.net/
https://github.com/rafat/wavelib
https://docs.px4.io/v1.12/en/middleware/mavlink.html
https://microsoft.github.io/AirSim/custom_drone/
http://planning.cs.uiuc.edu/node103.html
http://planning.cs.uiuc.edu/node103.html
https://docs.microsoft.com/de-de/windows/win32/api/sysinfoapi/nf-sysinfoapi-getsystemtimepreciseasfiletime
https://docs.microsoft.com/de-de/windows/win32/api/sysinfoapi/nf-sysinfoapi-getsystemtimepreciseasfiletime

Appendix

A.1 Pseudocodes for typical CHAI3D update loops

// create haptic device handler
cHapticDeviceHandler* handler = new cHapticDeviceHandler ();

// get handle to first found haptic device
cGenericHapticDevice* device;
handler->getDevice (device, 0);

0O~ O U W

// connect to haptic device
9 device->open();

11 // haptics loop
12 while (running) {

13 // read position from haptic device
14 cVector3d position;

15 device->getPosition(position);

16

17 // compute force

18 cVector3d force = -25 * position;
19

20 // send force to haptic device

21 device->setForce(force);

22}

23

24 // close connection to haptic device
25 device->close();

Listing A.1: Pseudocode of a typical loop updating the force feedback of the haptic device, using
explicit force vector.

// create haptic device handler
cHapticDeviceHandler* handler = new cHapticDeviceHandler ();

// get handle to first found haptic device
cGenericHapticDevice* device;
handler ->getDevice (device, 0);

// connect to haptic device
device->open() ;

© 00 O Ut WN -

11 // create virtual 3D world
12 cWorld* world = new cWorld();

14 // populate world
15 world->addChild(new cShapeCylinder (0.25, 0.25, 0.2));

64 Appendix

18 // create tool representing the tip of the haptic tool
19 cToolCursor* tool;

20 tool = new cToolCursor (world);
21 world->addChild (tool);
22

23 // attach haptic device to virtual tool
24 tool->setHapticDevice (device);

26 // haptics loop
27 while (rumnning) {

28 // compute global reference frames for each object
29 world->computeGlobalPositions (true);

30

31 // update position and orientation of tool
32 tool->updateFromDevice () ;

33

34 // compute interaction forces

35 tool->computelnteractionForces () ;

36

37 // send forces to haptic device

38 tool->applyToDevice () ;

39 %

40

41 // close connection to haptic device
42 device->close();

Listing A.2: Pseudocode of a typical loop updating the force feedback of the haptic device, using
cWorld abstraction.

A.2 AirSim configuration file with default values

1 {

2 "SimMode": "",

3 "ClockType": "",

4 "ClockSpeed": 1,

5 "LocalHostIp": "127.0.0.1",

6 "ApiServerPort": 41451,

7 "RecordUIVisible": true,

8 "LogMessagesVisible": true,

9 "ViewMode": "',

10 "RpcEnabled": true,

11 "EngineSound": true,

12 "PhysicsEngineName": "",

13 "SpeedUnitFactor": 1.0,

14 "SpeedUnitLabel": "m/s",

15 IIW,L‘ndlI: { IIXII: 0’ IIYH: 0’ HZII: 0 }’

16 "CameraDirector": {

17 "FollowDistance": -3,

18 "X": NaN, "Y": NaN, "Z": Nal,

19 "Pitch": NaN, "Roll": NaN, "Yaw": NaN

20 },

21 "Recording": {

22 "RecordOnMove": false,

23 "RecordInterval": 0.05,

24 "Folder": "",

25 "Enabled": false,

26 "Cameras": [

27 { "CameraName": "0", "ImageType": O, "PizelsAsFloat": false, "
VehicleName": "", "Compress": true 3}

65

} b
"CameraDefaults": {
"CaptureSettings": [

{
"ImageType": O,
"Width": 256,
"Height": 144,
"FOV_Degrees": 90,
"AutoExposureSpeed”: 100,
"AutoExposureBias": O,
"AutoEzposureMaxzBrightness": 0.64,
"AutoExposureMinBrightness": 0.03,
"MotionBlurAmount": O,
"TargetGamma": 1.0,
"ProjectionMode": "",
"OrthoWidth": 5.12
}
1,
"NoitseSettings": [
{
"Enabled": false,
"ImageType": O,
"RandContrib": 0.2,
"RandSpeed": 100000.0,
"RandSize": 500.0,
"RandDensity": 2,
"HorzWaveContrib":0.03,
"HorzWaveStrength": 0.08,
"HorzWaveVertSize": 1.0,
"HorzWaveScreenSize": 1.0,
"HorzNoiseLinesContridb": 1.0,
"HorzNoiselLinesDensityY": 0.01,
"HorzNoiseLinesDensityXV": 0.5,
"HorzDistortionContrib": 1.0,
"HorzDistortionStrength": 0.002
}
1,
"Gimbal": {
"Stabilization": O,
"Pitch": NaN, "Roll": NaN, "Yaw": NaN
}

"}”: NaN, "Y": NaN, "Z": NaN,
"Pitch": NaN, "Roll": NaN, "Yaw": NaN
Yo
"OriginGeopoint": {
"Latitude": 47.641468,
"Longitude": -122.140165,
"Altitude": 122
P
"TimeOfDay": {
"Enabled": false,
"StartDateTime": "",
"CelestialClockSpeed": 1,
"StartDateTimeDst": false,
"UpdateIntervalSecs": 60

},
"SubWindows ": [
{ "WindowID": 0, "CameraName": "0", "ImageType": 3, "VehicleName": "",
Visible": false 1},
{ "WindowID": 1, "CameraName": "0", "ImageType": 5, "VehicleName": "",

Visible": false 1},

"

66 Appendix

92 { "WindowID": 2, "CameraName": "0", "ImageType"”: O, "VehicleName": "", "
Visible": false }

93 s

94 "SegmentationSettings": {

95 "InitMethod": "",

96 "MeshNamingMethod": "",

97 "OverrideExisting": false

98 3,

99 "PawnPaths": {

100 "BareboneCar": { "PawnBP": "Class’/AirSim/VehicleAddv/Vehicle/VehicleAddvPawn .
VehicleAdvPawn_C’" },

101 "DefaultCar": { "PawnBP": "Class’/AirSim/Vehicleddv/SUV/SuvCarPauwn.
SuvCarPawn_C°" },

102 "DefaultQuadrotor": { "PawnBP": "Class’/AirSim/Blueprints/BP_FlyingPawn.
BP_FlyingPawn_C’" },

103 "DefaultComputerVision": { "PawnBP": "Class’/AirSim/Blueprints/
BP_ComputerVisionPawn.BP_ComputerVisionPawn_C’" }

104 },

105 "Vehicles": {

106 "SimpleFlight": {

107 "VehicleType": "SimpleFlight",

108 "DefaultVehicleState": "Armed",

109 "AutoCreate": true,

110 "PawnPath": "",

111 "EnableCollisionPassthrogh": false,

112 "EnableCollisions": true,

113 "AllowAPIAlways": true,

114 "EnableTrace": false,

115 "RC": {

116 "RemoteControlID": O,

117 "AllowAPIWhenDisconnected": false

118 To

119 "Cameras": {

120 // same elements as CameraDefaults above, key as name

121 Po

122 "X": NaN, "Y": NaN, "Z": NaN,

123 "Pitch": NaN, "Roll": NaN, "Yaw": NaN

124 ¥o

125 "PhysXCar": {

126 "VehicleType": "PhysXCar",

127 "DefaultVehicleState”: "",

128 "AutoCreate": true,

129 "PawnPath": "",

130 "EnableCollisionPassthrogh": false,

131 "EnableCollisions": true,

132 "RC": {

133 "RemoteControlID": -1

134 },

135 "Cameras": {

136 "MyCameral": {

137 // same elements as elements inside CameraDefaults above

138 3,

139 "MyCamera2": {

140 // same elements as elements inside CameraDefaults above

141 },

142 Po

143 "X": NaN, "Y": NaN, "Z": NaN,

144 "Pitch": NaN, "Roll": NaN, "Yaw": NaN

145 }

146 ¥

147

Listing A.3: AirSim configuration file with default values.

67

A.3 Example of libcoap server and client implementation

#include <stdio.h>
#include <coap3/coap.h>

static uint8_t i = 0;

U W N

void handleRequest (coap_resource_t* resource, coap_session_t* session, const
coap_pdu_t* request, const coap_string_t* token, coap_pdu_t* response) {
7 int ec;

8 size_t len;

9 uint8_t* data;

10

11 ec = coap_get_data(request, &len, (const uint8_t*x*) &data);

12 if (ec !'= 1) {

13 coap_pdu_set_code (response, COAP_RESPONSE_CODE_NOT_ACCEPTABLE) ;

14 return;

15 }

16

17 coap_show_pdu(LOG_INFO, request);

18

19 ec = coap_add_data(response, sizeof (uint8_t), &i);

20 if (lec) {

21 printf ("Could not add data to CoAP PDU!\n");

22 coap_pdu_set_code (response, COAP_RESPONSE_CODE_INTERNAL_ERROR) ;

23 return;

24 }

25

26 coap_pdu_set_code (response, COAP_RESPONSE_CODE_CHANGED) ;

27

28 ++1i;

29 1}

30

31 int main(int argc, char const xargv[]) {

32 int ec;

33 coap_context_t* context;

34 coap_address_t address;

35 coap_endpoint_t* endpoint;

36 coap_resource_t* resource;

37

38 coap_startup () ;

39 coap_set_log_level (LOG_DEBUG) ;

40

41 ec = resolveAddress("127.0.0.1", "5683", &address) ;

42 /* ‘resolveAddress ‘ is not implemented here as it is specific to the operating
system,

43 * but this is a function that basically fills the coap_address_t struct

44 x/

45 if (ec < 0) {

46 printf ("Could not resolve bind address!/\n");

47 return 1;

48 ¥

49

50 context = coap_new_context (NULL);

51 if (!context) {

52 printf ("Could not create CoAP context!/\n");

53 return 1;

54 ¥

55

56 endpoint = coap_new_endpoint (context, &address, COAP_PROTO_UDP);

57 if (!endpoint) {

58 printf ("Could not create CoAP endpoint!/\n");

59 return 1;

60 }

68

Appendix

61
62
63
64
65
66
67
68
69
70
71

}

resource = coap_resource_init (coap_make_str_const(”""), 0);
coap_register_handler (resource, COAP_REQUEST_PUT, handleRequest);
coap_add_resource (context, resource) ;

while (1) {

coap_io_process (context, COAP_IO_WAIT);
¥

return O;

Listing A.4: Minimal CoAP server implementation using libcoap to serve an integer on root path /.

TUks W N =

#include <stdio.h>
#include <string.h>
#include <coap3/coap.h>

coap_response_t handleResponse(coap_session_t *session, const coap_pdu_t *sent,

}

const coap_pdu_t *received, const coap_mid_t mid) {
int ec;
size_t len;
uint8_tx* data;

coap_show_pdu(LOG_INFO, received);

int* ack_received = (int*) coap_session_get_app_data(session);
*ack_received = 1;

return COAP_RESPONSE_OK;

int main(int argc, char const x*argv[]) {

int ec;
int rc = 0;
coap_context_t* context = NULL;

int ack_received;
coap_address_t address;
coap_session_t* session = NULL;
coap_pdu_tx* pdu;

coap_startup () ;
coap_set_log_level (LOG_DEBUG) ;

ec = resolveAddress("127.0.0.1", "5683", &address) ;
/* ‘resolveAddress ‘¢ is not implemented here as it is specific to the operating
system,

* but this is a function that basically fills the coap_address_t struct
x/
if (ec < 0) {

printf ("Could not resolve remote address!/\n");

rc = 1;
goto cleanup;
¥
context = coap_new_context(NULL);

if (!context) {
printf ("Could not create CoAP contezt!/\n");

rc = 1;
goto cleanup;

}

coap_register_response_handler(context, handleResponse) ;

69

50

51 session = coap_new_client_session(context, NULL, &address, COAP_PROTO_UDP);
52 if (!session) {

53 printf ("Could not create CoAP session!\n");

54

55 rc = 1;

56 goto cleanup;

57 ¥

58

59 coap_session_set_app_data(session, &ack_received);

60

61 for (int i = 0; i < 10; ++i) {

62 pdu = coap_pdu_init (COAP_MESSAGE_CON, COAP_REQUEST_CODE_PUT,

coap_new_message_id(session), coap_session_max_pdu_size(session));
63 if (!pdu) {

64 printf ("Could not create CoAP PDU!\n");

65

66 rc = 1;

67 goto cleanup;

68 }

69

70 uint8_t token[8];

71 size_t token_len;

72 coap_session_new_token(session, &token_len, token);
73 coap_add_token(pdu, token_len, token);

74

75

76 uint8_t datal[16];

7 const size_t data_len = sizeof(data) / sizeof(datal[0]);
78 memset (data, i, data_len);

79

80 ec = coap_add_data(pdu, len, data);

81 if (lec) {

82 printf ("Could not add data to CoAP PDU!/\n");

83

84 rc = 1;

85 goto cleanup;

86 }

87

88 ack_received = 0;

89 coap_send(session, pdu);

90 while (!lack_received) coap_io_process(context, COAP_IO_WAIT);
91 }

92

93 cleanup:

94 if (session != NULL) coap_session_release(session);
95 if (context != NULL) coap_free_context (context);

96 coap_cleanup () ;

97

98 return rc;

99 1}

Listing A.5: Minimal CoAP client implementation using libcoap to send ten CON requests to root
path /.

A.4 UML class diagrams for all control modes

70 Appendix

ControlMode\

@ ControlMode

O Configuration* Config

'ManualFlightControlMode

@ ManualFlightControlMode

@ Configuration © Configuration* Config
<& SetAnglesThrottleCommandT* command
© MessageT message

© double CommandFrequency
O bool UseAccurateScheduling

O long long ShortSwitchPressDuration © ctor(config, haptics, transport)
o long long LongSwitchPressDuration © dtor(void)
. © calculateHapticFeedback(void) : void
© DelayBetweenCommands(void) : double 9 tick(void) : void
< onSwitchpressed(number, longPress) : void
¢

@ Configuration

© double MaxThrottleOnZAxis

© double YawingRateMultiplier

© double MinYawForYawing

0 chai3d::cVector3d HapticFeedbackForceMultiplier

© ctor(void)

Figure A.1: UML class diagram showing fields and methods of the class that implements the Manual
Flight control mode.

71

ControlMode\

@ ControlMode

O Configuration* Config

VelocityJoystickControlMode

@ VelocityJoystickControlMode

@ Configuration o Configuration* Config
< MoveVelocityCommandT* command
& MessageT message

© double CommandFrequency
O bool UseAccurateScheduling

O long long ShortSwitchPressDuration © ctor(config, haptics, transport)
o long long LongSwitchPressDuration © dtor(void)

T © calculateHapticFeedback(void) : void
© DelayBetweenCommands(void) : double o tickvoid) : void

< onSwitchpressed(number, longPress) : void
¢

© Configuration

O chai3d::cVector3d VelocityMultiplier

O chai3d::cVector3d VelocityMultiplierincrement

O chai3d::cVector3d VelocityMultiplierDecrement

o double MinDistanceFromZeroPointForVelocity

© double YawingRateMultiplier

© double MinYawForYawing

O chai3d::cVector3d HapticFeedbackForceMultiplier

© ctor(void)

Figure A.2: UML class diagram showing fields and methods of the class that implements the Velocity
Joystick control mode.

72

Appendix

ControlMode\

@ ControlMode

O Configuration* Config

@ Configuration

© double CommandFrequency
0 bool UseAccurateScheduling
0 long long ShortSwitchPressDuration
o long long LongSwitchPressDuration

© DelayBetweenCommands(void) : double

\Ta\rgetPositioningControIMode\

@ TargetPositioningControlMode

O Configuration* Config

< SetPositionPreviewCommandT* setPositionPreviewCommand
© MessageT setPositionPreviewMessage

<& MovePositionCommandT* movePositionCommand

< MessageT movePositionMessage

© bool resetToZeroPointInProgress

< double yaw

© ctor(config, haptics, transport)

o dtor(void)

© calculateHapticFeedback(void) : void

< tick(void) : void

< commandMoveToPosition(void) : void

< resetToZeroPoint(void) : void

< onSwitchpressed(number, longPress) : void

@ Configuration

© double VelocityConstant

O double VelocityMultiplier

O double YawingRateMultiplier

© double MinYawForYawing

0 unsigned int FeedbackTimeAfterResetToZeroPoint
0 chai3d::cVector3d ConstantHapticForceFeedback
© bool SendTargetPositionForPreview

© ctor(void)

Figure A.3: UML class diagram showing fields and methods of the class that implements the Target

Positioning control mode.

73

ControlMode\

@ ControlMode

O Configuration* Config

@ Configuration

0 double CommandFrequency
© bool UseAccurateScheduling
© long long ShortSwitchPressDuration
O long long LongSwitchPressDuration

0 DelayBetweenCommands(void) : double

\'(errainAwareTa rgetPositioningControIMode\

© TerrainAwareTargetPositioningControlMode

© Configuration* Config

< SetPositionPreviewCommandT* setPositionPreviewCommand
© MessageT setPositionPreviewMessage

© MovePositionCommandT* movePositionCommand

© MessageT movePositionMessage

< bool resetToZeroPointInProgress

< double yaw

< PointcloudSensor* pointcloudSensor

< chai3d::cWorld* world

< chai3d::cToolCursor* tool

© chai3d::cMultiPoint* pointcloud
© chai3d::cMesh* mesh

© ctor(config, haptics, transport)

© dtor(void)

© calculateHapticFeedback(void) : void

< tick(void) : void

< commandMoveToPosition(void) : void

© resetToZeroPoint(void) : void

< onSwitchpressed(number, longPress) : void

© Configuration

© double VelocityConstant

© double VelocityMultiplier

© double YawingRateMultiplier

© double MinYawForYawing

© uint FeedbackTimeAfterResetToZeroPoint

© chai3d::cVector3d ConstantHapticForceFeedback

© bool TriangulatePoints

© double PointcloudStiffness

© double MeshStiffness

© double ToolRadius

--debug options-
© bool SendTargetPositionForPreview
© bool VisualizeWorld

© double PointcloudPointSize

© ctor(void)

Figure A.4: UML class diagram showing fields and methods of the class that implements the Terrain-
Aware Target Positioning control mode.

I herewith assure that I wrote the present thesis titled Teleoperation of Quadrotor Drones
using Haptic Devices independently, that the thesis has not been partially or fully submitted
as graded academic work and that I have used no other means than the ones indicated. I
have indicated all parts of the work in which sources are used according to their wording
or to their meaning.

I am aware of the fact that violations of copyright can lead to injunctive relief and claims
for damages of the author as well as a penalty by the law enforcement agency.

Magdeburg, November 10, 2022
(Jon-Mailes Graeffe)

	List of Figures
	List of Tables
	Listings
	Acronyms
	Glossary
	Introduction
	Thesis Contribution
	Thesis Structure

	Background
	Teleoperation
	Haptic Devices
	Constrained Application Protocol

	Related Work
	Control of Quadrotor Drones
	Haptic Devices for Teleoperation
	Compression of Kinesthetic Data
	Comparison of Demonstrator Implementations

	Thesis Contribution
	Software Requirements
	Control Frequency
	Control Latency
	Haptics Frequency
	Sensitive Data Rate
	Extendability and Modularity

	Used Software
	Drone Simulation
	Haptic Device Framework
	Data and Communication
	Other Dependencies

	Concept
	Control Modes

	Implementation
	Messaging
	Component haptics-brain
	Component drone-controller-airsim

	Evaluation
	Experiments
	Control Mode Latency
	Haptics Latency
	Compression Error
	User Experience of Control Modes

	Data Rate and Overhead

	Conclusion
	Summary
	Future Work

	Bibliography
	Appendix
	Pseudocodes for typical CHAI3D update loops
	AirSim configuration file with default values
	Example of libcoap server and client implementation
	UML class diagrams for all control modes

